

ابحاث التنمية المستدامة كلية العلوم $\mathbf{2022}$ Scopus

Title	Characterization and cost analysis of a modified silica gel-based adsorption desalination application
Authors	Alsaman, A.S., Askalany, A.A., Ibrahim, E.M.M., (), Ali, E.S., Ahmed, M.S.
Journal	Journal of Cleaner Production 379,134614
Abstract	This study aims to reduce adsorption desalinated water cost by innovative employing silica gel/CaCl2 composite and novel silica gel/(NH4)2CO3 activated materials. Raw silica gel (SG), which served as the host matrix, was acid-treated and impregnated with CaCl2 and (NH4)2CO3. The prepared samples characteristics (XRD, N2 adsorption, water vapor adsorption) have been investigated and compared to the raw SG. A simulation model has been used to investigate the impact of the study samples on adsorption desalination (AD) system performance with and without heat recovery (HR). The study also includes a cost analysis of the AD water production system (using the tested materials) that uses solar energy or a waste heat source. The SG/CaCl2 achieved the highest water adsorption (0.95 kgH2O/kg) with a SDWP of 23.3 m3/ton per day, SCP 660 W/kg, and COP 0.71. With HR, the system could produce 35 m3/ton of SG/CaCl2 per day SDWP. The study concluded that the tested samples outperform the raw material as the total production cost of AD water using SG/CaCl2 has been reduced to approximately 37% using solar energy and 60% using waste heat as a regenerative heat source.

Title	Heat and mass transfer for MHD peristaltic flow in a micropolar
	nanofluid: mathematical model with thermophysical features
Authors	Abd-Alla, A.M., Abo-Dahab, S.M., Thabet, E.N., Abdelhafez, M.A.
Journal	Scientific reports 12(1), pp. 21540
Abstract	According to a survey of the literature, nanofluids are superior to traditional fluids at transferring heat. A detailed analysis of the models mentioned above is crucial since there are large gaps in the illumination of current solutions for improving heat transfer in nanomaterials. The ongoing investigation's purpose is to ascertain the tiny size gold particles drift in free with the heat and mass transfer, buoyancy forces, thermophoresis, and Brownian motion of a micropolar nanofluid being transported through a porous medium in an asymmetric channel with a uniform magnetic field using a long-wavelength and low Reynolds number approximation. The resulting dimensionless nonlinear governing equations have been numerically solved using a MATLAB software and the Runge-Kutta-Fehlberg integration scheme. Two comparisons with previously investigated problems are also made to confirm our findings, and an excellent concurrence is discovered. As a result, trustworthy results are being given. Numerical solutions are used to describe the effects of different thermal-fluidic parameters on velocity profiles, temperature, concentration, micropolar rotation, pressure gradient, shear stress, heat flux, and nanoparticle volume flux, etc. Tables, graphs, and bar charts are used to present and discuss numerical results that have been produced. A comparison of the resulting numerical solution to earlier literature also reveals a satisfactory level of agreement. Insight into real-world applications such nanofluidic, energy conservation, friction reduction, and power generation are provided by this work. Furthermore, the Brownian and thermophoresis parameters behave significantly differently in a concentration field. On the other hand, the study puts forward an important note that for peristaltic flow of a micropolar fluid with nanoparticles can be controlled by suitably adjusting the micropolar parameter, thermophoresis parameter.

Title	Bioremoval of Cylindrospermopsis raciborskii cells and
	cylindrospermopsin toxin in batch culture by the yeast Aureobasidium pullulans
Authors	Mohamed, Z., Alamri, S., Hashem, M., Mostafa, Y.
Journal	Environmental Science and Pollution Research
	29(60), pp. 90140-90146
Abstract	This study describes the ability of a yeast strain, Aureobasidium
	pullulans KKUY0701 isolated from eutrophic lake to eliminate
	Cylindrospermopsis raciborskii and cylindrospermopsin (CYN) toxin.
	The anti-cyanobacterial activity of this yeast strain was evaluated by
	growing with living cells and filtrate of C. raciborskii. CYN bioremoval
	was assayed using living and heat-inactivated yeast cells. Both living
	cells and filtrate of this yeast strain were able to suppress the growth of
	C. raciborskii, with total cell death occurring at day 2 and day 3,
	respectively. Living and inactivated yeast cells, but not yeast filtrate,
	reduced CYN concentrations released into cyanobacterial cultures,
	indicating that this toxin might be removed from the culture medium
	via absorption onto yeast surface rather than enzymatic biodegradation.
	The adsorption experiments also confirmed the elimination of CYN by
	living and heat-inactivated yeast. Nevertheless, inactivated yeast
	exhibited higher capacity (K = 3.3) and intensity (n = 1.4) than living
	yeast (K = 1.9, n = 1) for CYN adsorption. The study suggests that this
	yeast strain could be employed for bioremediation of
	Cylindrospermopsis blooms in freshwaters. Additionally, heat-
	inactivated yeast biomass could be used in slow sand filters for
	elimination of CYN in drinking water treatment plants.

Title	Cooling technologies for enhancing photovoltaic-thermal (PVT)
	performance: a state of the art
Authors	Ghazy, M., Ibrahim, E.M.M., Mohamed, A.S.A., Askalany, A.A.
Journal	International Journal of Energy and Environmental Engineering
	13(4), pp. 1205-1235
Abstract	Although photovoltaic cells are good technology that converts sunlight
	into electricity, it suffers from low efficiency in hot weather conditions.
	Photovoltaic-thermal technologies (PV/T) have addressed the problem
	of overheating PV cells utilizing several cooling methods. These
	technologies can improve the electrical efficiency of PV cells and
	provide thermal energy simultaneously. This work presents an updated
	review of the most critical PV cooling technologies and their impact on
	electrical and thermal efficiency, in addition to the performance
	formulas for each technology. An analytical comparison of the results of
	the studies conducted on each technique is presented to determine the
	best performance obtained. The strengths and weaknesses are presented
	and the most effective techniques that can be relied upon to develop and
	popularize PV systems in the future.

Title	Stochastic optimal reactive power dispatch at varying time of load demand and renewable energy resources using an efficient modified jellyfish optimizer
Authors	Gami, F., Alrowaili, Z.A., Ezzeldien, M., (), Oda, E.S., Mohamed, S.A.
Journal	Neural Computing and Applications 34(22), pp. 20395-20410
Abstract	Solving the optimal reactive dispatch (ORPD) is a strenuous task to assign the best operating point of the electrical system components to obtain the most secure and stable state of system. This problem became more complex problem due the variation of the load demand or inclusion the renewable energy resources (RERs). The aim of this paper is solving the ORPD problem using a modified jellyfish search optimizer (MJSO) under deterministic and probabilistic states of the load demand and the RERs. The MJSO is based on boosting the exploration and exploitation phases of the standard jellyfish search optimizer (JSO) using two strategies. The first strategy is enhancing the exploration process by using a chaotic mutation while the second strategy is implemented for the exploitation process using a spiral orientation motion of the populations around the sorted jellyfish. Three uncertain parameters are considered including the load demand, the solar irradiance, and the wind speed which are represented using the Weibull, the Beta, and the normal probability density functions, respectively. The Monte Carlo simulation along with scenario-based reduction to generate a set of scenarios for the stochastic ORPD. To verify the effectiveness of the MJSO for solving the ORPD problem, it is tested on IEEE 30-bus system and the obtained results are compared with other well-known optimization techniques. The obtained results and the comparison with other techniques indicate that the proposed MJSO algorithm provides effective and robust high-quality solution when solving the ORPD at deterministic state. In addition of that the expected power loss is decreased considerably with application the proposed technique for solving the ORPD at stochastic state.

Title	Potential bioactivity of Phoenix dactylifera fruits, leaves, and seeds against prostate and pancreatic cancer cells
Authors	Ghazzawy, H.S., Gouda, M.M., Awad, N.S., (), Gabr, G.A., Hikal, D.M.
Journal	Frontiers in Nutrition 9,998929
Abstract	The use of functional foods' phytochemicals in the chemoprevention of different cancer diseases has become one of the hot scientific areas in the clinical nutrition field. For instance, the Khalas palm cultivar (KPC; Phoenix dactylifera) is one of the natural sustainable resources that have high bioactivity and functionality. This study aimed to investigate the antiproliferative activity and mode of action of KPC's different parts on prostate (Pc3) and pancreatic (panc1) cancer cells at a molecular level. In the methods, KPC's leaves, seeds, and fruits' chemical composition and phytochemical analysis were analyzed. Also, the cytotoxic effects of each extract were assessed against pc3 and panc1 cell lines. Besides, induction of apoptosis, cell cycle analysis, and gene expression of both Cap3 and Cap9 were studied. The obtained results indicated that KPC leaves extract exhibited the highest significant (P < 0.01) anti-proliferation activity against the utilized cancer cell lines compared to fruits and seeds extracts. Also, there were significant (P < 0.05) differences in the phenolic contents, flavonoid of compounds, and antioxidant power of the leaves when compared to the seeds and fruits. Additionally, the highest cytotoxic effect (lowest IC50) was recorded with leave extract than seeds and fruits. Meanwhile, the seeds extract induced (P < 0.05) the apoptosis and arrested cells in the G2/M phase as well as up-regulated the gene expression of the control group. In conclusion, this study showed that the presence of bioactive components in the KPC different parts extracts have the significant ability to induce the apoptotic pathway that could down-regulate the proliferation of prostate (pc3) and pancreatic (panc1) cancer cells. The pathway mechanism of action was induced by the phytol molecule presented in its leaves extract.

Title	Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno[2,3-b]thiophene azo dye derivatives
Authors	Shokr, E.K., Kamel, M.S., Abdel-Ghany, H., El- Remaily, M.A.E.A.A.A., Abdou, A.
Journal	Materials Chemistry and Physics 290,126646
Abstract	Some novel thieno[2,3-b]thiophene-2,5-dicarbonitrile derivatives namely; 3,4-bis(2-hydroxynaphthalen-1-yl)diazenyl)thieno[2,3-b]thiophene-2,5-dicarbonitrile, 3,4-bis(4-aminonaphthalen-1-yl)diazenyl)thieno[2,3-b]thiophene-2,5-dicarbonitrile and 3,4-bis(4-(dimethylamino)phenyl) diazenyl)thieno[2,3-b]thiophene-2,5-dicarbonitrile have been synthesized and characterized by FT-IR and NMR spectroscopies. Thin films of the synthesized thieno[2,3-b]thiophene-2,5-dicarbonitrile derivatives have been deposited by the thermal evaporation method and characterized by UV-VIS-NIR spectroscopy. Their spectral dependences of absorption, dielectric, dispersion and allied parameters have been investigated, discussed, and compared with published results. The high absorption coefficient (~105cm-1) at a solar maximum wavelength ($\lambda \cong 500$ nm) and the band and optical gap energies of 2.95 and 2.15 eV, respectively manifested by the present samples make them suitable to be applied in optoelectronic devices, especially as solar absorber material. The revealed high values of non-linear refractive index n2 and 3rd order non-linear susceptibility revealed by these organic compound films, which are significantly higher than those of chalcogenide and oxide materials recommend them as promising NLO-elements. These results have been insured by geometry optimization and NLO calculations using Density Functional Theory with B3LYP method in the level of 6–311 G (d,p).

Title	A new source of representative secondary PET nanoplastics. Obtention,
	characterization, and hazard evaluation
Authors	Villacorta, A., Rubio, L., Alaraby, M., (), Marcos, R., Hernández, A.
Journal	Journal of Hazardous Materials439,129593
Abstract	Micro and nanoplastics (MNPLs) are emergent environmental pollutants requiring urgent information on their potential risks to human health. One of the problems associated with the evaluation of their undesirable effects is the lack of representative samples, matching those resulting from the environmental degradation of plastic wastes. To such end, we propose an easy method to obtain polyethylene terephthalate nanoplastics from water plastic bottles (PET-NPLs) but, in principle, applicable to any other plastic goods sources. An extensive characterization indicates that the proposed process produces uniform samples of PET-NPLs of around 100 nm, as determined by using AF4 and multi-angle and dynamic light scattering methodologies. An important point to be highlighted is that to avoid the metal contamination resulting from methods using metal blades/burrs for milling, trituration, or sanding, we propose to use diamond burrs to produce metal-free samples. To visualize the toxicological profile of the produced PET-NPLs we have evaluated their ability to be internalized by cells, their cytotoxicity, their ability to induce oxidative stress, and induce DNA damage. In this preliminary approach, we have detected their cellular uptake, but without the induction of significant biological effects. Thus, no relevant increases in toxicity, reactive oxygen species (ROS) induction, or DNA damage -as detected with the comet assay-have been observed. The use of representative samples, as produced in this study, will generate relevant data in the discussion about the potential health risks associated with MNPLs exposures

Title	Eco-friendly and regiospecific intramolecular cyclization reactions of cyano and carbonyl groups in N,N-disubstituted cyanamide
Authors	Moustafa, A.H., Ahmed, W.W., Awad, M.F., (), Khodairy, A., Amer, A.A.
Journal	Molecular Diversity 26(5), pp. 2813-2823
Abstract	Eco-friendly, low-cost and high-yielding synthetic route toward imidazoles and oxazoles has been developed. 1-(4,6-Dimethylpyrimidin- 2-yl)-2-(alkylamino)-1,5-dihydro-4H-imidazol-4-one 3a–c have been synthesized via regiospecific reaction of ethyl 2-(N-(4,6- dimethylpyrimidin-2-yl)cyanamide)acetate 1 with primary aliphatic amines in water as green solvent. While, the reaction between 4,6- dimethylpyrimidin-2-yl(2-oxo-2-phenylethyl)cyanamide 2 and primary aliphatic amines using water and/or iso-propanol as green solvents afforded 3-(4,6-dimethylpyrimidin-2-yl)-5-phenyl-1,3-oxazole-2(3H)- imine 6 and 1-(4,6-dimethylpyrimidin-2-yl)-N-alkyl-4-phenyl-1H- imidazol-2-amine 7a–d, respectively. Graphical abstract: [Figure not available: see fulltext.]

Title Authors	Electrochemical Impedance Investigation of Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanofibers Photoanodes Abd El-Lateef, H.M., Khalaf, M.M., Dao, VD., Mohamed, I.M.A.
Journal	Materials 15(17),6175
Abstract	This work investigates an electrochemical impedance analysis based on synthesized TiO2 nanofibers (NFs) photoanodes, which were fabricated via electrospinning and calcination. The investigated photoanode substrate NFs were studied in terms of physicochemical tools to investigate their morphological character, crystallinity, and chemical contents via scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analyses. As a result, the studied photoanode substrate NFs were applied to fabricate dye- sensitized solar cells (DSCs), and the electrochemical impedance analysis (EIS) was studied in terms of equivalent circuit fitting and impacts of N-doping, the latter of which was approved via XPS analysis. N-doping has a considerable role in the enhancement of charge transfers, which could be due to the strong interactions between active- site N atoms and the used photosensitizer.

Title Authors Journal	Inhibition of The Growth and Toxicity of Cyanobacterium Chroococcus minutus Using Extremely Low Frequency Electromagnetic FieldsMohamed, Z.A., Hosny, A.A., Bakr, A.A.Egyptian Journal of Botany 62(3), pp. 817-824
Abstract	THE EFFECTS of extremely low-frequency electromagnetic fields (ELF-EMFs) on the growth and synthesis of microcystins (MCs) production of the harmful cyanobacterium Chroococcus minutus were examined by exposing cyanobacterial cells to various ELF-EMF frequencies (0.1–1Hz) for various exposure times (10–60min). C. minutus cultures exposed to ELF-EMF at a frequency of 0.5Hz for 40min had significantly fewer cells than the control. Under these conditions, intracellular and extracellular (MCs) and chlorophyll-a concentrations also decreased significantly. Within 48h, no extracellular MCs were detected in cultures exposed to ELF-EMF for 60min. This study offers an eco-friendly technique for removing harmful cyanobacterial toxins from water resources. By degrading extracellular MCs after cell lysis, ELF-EMF is non-destructive, non- reactive and safe for the environment. In addition, it prevents additional aquatic environmental pollution input.

Title	Landslides and flood multi-hazard assessment using machine learning techniques
Authors	Youssef, A.M., Mahdi, A.M., Pourghasemi, H.R.
Journal	Bulletin of Engineering Geology and the Environment 81(9),370
Abstract	Saudi Arabia is affected by various types of natural hazards that affect people's lives and property. In this paper, the effects of landslides and floods in Wadi Dawqah in Bahah region, Saudi Arabia, are studied. Mountainous regions are exposed to natural hazards that require modeling to produce multi-hazard maps. Three models were used in this study: logistic regression (LR), random forest (RF), and support vector machine (SVM). Seventeen influencing factors are used to map multi- hazards using inventory data. The effectiveness and significance of the factors were determined for both landslides and floods. Model results were compared using area under the curve (AUC), overall hazard accuracy, mean absolute error, root mean square error, and kappa index. The results show that RF has the best performance in predicting landslides with a high AUC of 94.9%, while SVM, LR, and RF have high prediction for floods (AUC of 92.7%, 98%, and 98.7%, respectively). Since RF has the highest values for both landslides and floods, other statistical comparisons show that the overall accuracy is 94% and 99%, the kappa index is 0.870 and 0.978, the MAE values are 0.064 and 0.010, and finally the RMSE values are 0.253 and 0.10 for landslides and floods, respectively. Accordingly, the models RF for landslides and LR, SVM, and RF for floods were used to generate three multi-hazard maps for Wadi Dawqah basin. As a preliminary step, the map produced could provide a cornerstone for planners and decision making for future development.

Title	Antibacterial, antioxidant and anticancer of fermentation by Bacillus subtilis on bagasse and wheat bran
Authors	El-Mongy, M.A., Hamouda, R.A., Ali, S.G., Sedeek, E.A., Mahmoud, E.A.
Journal	Current Chemistry Letters 11(4), pp. 383-392
Abstract	Bagasse and wheat bran are agrowaste and cause different environmental problems. These compounds contain highly valuable compounds that can be recycled by microorganisms. This work was carried out to evaluate the effect of fermentation by Bacillus subtilis on biological activity and chemical components of bagasse and wheat bran. The results demonstrated the antimicrobial activity of fermented wheat bran and bagasse against eight selected microbial pathogens exhibited high activity of fermented wheat bran and mix, fermented bagasse showed less antimicrobial activity. Fermented wheat bran and bagasse samples had the highest antioxidant activity values (16.45 and 14.94 %) in comparison with the unfermented samples (6.20 and 3.97 %) respectively. Concentration of protein, ash, oil, and carbohydrates in fermented wheat bran were 5.34 %, 7.30%, 2.36% and 10.6%, whereas in bagasse they were 2.45%, 1.68%, 1.51% and 3.25 respectively. The moisture contents in bagasse 73.1% were more than in wheat bran 63.88%.

Title	Solar powered adsorption desalination system employing CPO-27(Ni)
Authors	Ghazy, M., Askalany, A.A., Ibrahim, E.M.M., (), Ali, E.S., AL-Dadah, R.
Journal	Journal of Energy Storage 53,105174
Abstract	Adsorption-based desalination system (ADS) is an alternative technology to the traditional water desalination systems as low-temperature sources can operate it. Also, ADSs use environmentally friendly materials, limiting global warming and environmental pollution. This work investigates the performance parameters of ADS powered by an evacuated thermal solar collector theoretically and experimentally. The system uses an advanced sorption material of metal-organic frameworks called CPO-27(Ni). The study estimates optimal operating conditions of ADS under the climate of Egypt. A mathematical model is carried out using MATLAB integrated with TRNSYS software. The study investigates high system performance through two modes; without heat recovery (Mode-1) and heat recovery (Mode-2). The ADS performance is evaluated by specific daily water production (SDWP) and gain output ratio (GOR) parameters. The results show a remarkable superiority for mode-2 as it achieved 10 (m3/ton-day) SDWP and 0.23 GOR at the optimum operating conditions. The improvement ratio using mode-2 reached 88 % of SDWP and 79 % of GOR. Also, the validation results showed a good qualitative and quantitative agreement between the experimental and theoretical data.

Title	Experimental investigation of hybrid photovoltaic solar thermal collector (PV/T)-adsorption desalination system in hot weather conditions
Authors	Ghazy, M., Ibrahim, E.M.M., Mohamed, A.S.A., Askalany, A.A.
Journal	Energy 254,124370
Abstract	Solar photovoltaic is one of the most famous renewable energy collectors and the most prevalent. The drawback that restricts the widespread use of photovoltaic cells is their relatively low efficiency in hot weather conditions. The current work investigates effect of cooling photovoltaic cells using an adsorption desalination/cooling system (ADS). The proposed system is a new application that simultaneously produces electrical power and desalinated water. Photovoltaic cells are cooled by chilled water produced during the desalination process of the ADS to improve the efficiency of photovoltaic cells and maximize the utilization of the ADS. A sheet and tube thermal collector is fabricated to cool the rear PV panel (PV/T). It is found that the proposed system positively affects the performance of both PV cells and the desalination system. The results showed that the PV/T's electrical and thermal efficiencies are 11.5% and 77.5%, respectively, at 1000 W/m2 solar radiation and 45 °C ambient temperature. Performance parameters of the ADS are 6.3 (m3/ton-day) specific daily water productions, 152.2 W/kg specific cooling power, and 0.25 coefficient of performance. There is an improvement in the electrical power, specific daily water productions, coefficient of performance, and specific cooling power by 17.5%, 19.69%, 9.9%, and 6.13%, respectively.

Title	Advanced machine learning algorithms for flood susceptibility modeling — performance comparison: Red Sea, Egypt
Authors	Youssef, A.M., Pourghasemi, H.R., El-Haddad, B.A.
Journal	Environmental Science and Pollution Research 29(44), pp. 66768-66792
Abstract	Floods are among the most devastating environmental hazards that directly and indirectly affect people's lives and activities. In many countries, sustainable environmental management requires the assessment of floods and the likely flood-prone areas to avoid potential hazards. In this study, the performance and capabilities of seven machine learning algorithms (MLAs) for flood susceptibility mapping were tested, evaluated, and compared. These MLAs, including support vector machine (SVM), random forest (RF), multivariate adaptive regression spline (MARS), boosted regression tree (BRT), functional data analysis (FDA), general linear model (GLM), and multivariate discriminant analysis (MDA), were tested for the area between Safaga and Ras Gharib cities, Red Sea, Egypt. A geospatial database was developed with eleven flood-related factors, namely altitude, slope aspect, lithology, land use/land cover (LULC), slope length (LS), topographic wetness index (TWI), slope angle, profile curvature, plan curvature, stream power index (SPI), and hydrolithology units. In addition, 420 actual flooded areas were recorded from the study area to create a flood inventory map. The inventory data were randomly divided into training group with 70% and validation group with 30%. The flood-related factors were tested with a multicollinearity test, the variance inflation factor (VIF) was less than 2.135, the tolerance (TOL) was more than 0.468, and their importance was evaluated with a partial least squares (PLS) method. The results show that RF performed the best with the highest AUC (area under curve) value of 0.813, followed by GLM with 0.763, and SVM with 0.733. The results of this study and the flood susceptibility maps could be useful for environmental mitigation, future development activities in the area, and flood control areas.

Title	Experimental investigation of sodium polyacrylate-based innovative adsorbent material for higher desalination and cooling effects
Authors	Alsaman, A.S., Ibrahim, E.M.M., Salem Ahmed, M., (), Farid, A.M., Askalany, A.A.
Journal	Energy Conversion and Managemen 266,115818
Abstract	This study explores enhancing adsorption system's performance utilizing sodium polyacrylate (SP) as an adsorbent for the first time. Four innovated SP samples are explored: raw SP, SP/HCl, SP/(NH4)2CO3), and SP/CaCl2 composite for adsorption desalination and cooling applications. Different characterization methods, including X-ray diffraction, nitrogen adsorption isotherm, and water adsorption (isotherms and kinetics) of SP samples, are investigated. Water adsorption experimental results onto SP samples and their numerical fitting with the Dubinin-Astakhov equilibrium model for isotherms and linear driving force model for kinetics have been expressed. The composite SP/CaCl2 had the highest experimental adsorption uptake of 1.26 kgH2O/kg among the studied samples. At 85 °C regeneration temperature, water desalination production per day (SDWP) achieves 15 m3/ton, with a cooling power of 425 W/kg. SDWP could reach 41 m3/ton of SP/CaCl2 per day with heat recovery. The system can obtain an SDWP of 45 m3/ton per day at a regeneration temperature of 95 °C. The findings show that the system can run efficiently using renewable energy, waste heat, or geothermal energy as heat sources.

Title	Quantum coherence and parameter estimation for mixed entangled
	coherent states
Authors	Algarni, M., Berrada, K., Abdel-Khalek, S.
Journal	Modern Physics Letters A37(24),2250159
Abstract	We study the temporal evolution of quantum coherence and parameter estimation for two-mode coherent-state superposition by using the master equation. Analytic expressions are provided and numerically displayed, which can illustrate the reliance of the coherence and Fisher information during the dynamics. Generally, we find that the amount of the quantum measures has the same behavior during the time variation, and displays a different order that depends on the different strength regimes of the input radiation fields and then disappears at infinite times. We show that these measures start from maximal value at the initial instant and decrease the time goes on. Moreover, we can observe that these measures can be protected resisted from the environment effect during the dynamics, showing an important feature of coherence and Fisher information. The obtained results can be assumed more practical in the characterization of the behavior of the coherence and Fisher information under the effect of the environment. Our observations can provide significant implications in harnessing these phenomena in quantum optics and information.

Title	Energy aware fault tolerant clustering with routing protocol for
11010	improved survivability in wireless sensor networks
Authors	Mansour, R.F., Alsuhibany, S.A., Abdel-Khalek, S., (), Obaid, A.J., Gupta, D.
Journal	
Journal	Computer Networks 212,109049
Abstract	Wireless Sensor Networks (WSN) remain a hot research topic due to its wide range of application areas like environmental monitoring, military surveillance, healthcare, and disaster management. Network survivability is one of the challenging issues in WSN that needs to be maximized for long-run operation of the network. It can be proficiently improved by effective utilization of available energy since the nodes in WSN operate only via in-built batteries. The studies conducted earlier have mainly focused on the design of clustering and routing protocols to reduce energy consumption in the network. With this motivation, the current research paper presents a novel Energy-Aware Fault Tolerant Clustering with Routing for Improved Survivability (EAFTC-RIS) technique in WSN. The proposed EAFTC-RIS technique intends to select the Cluster Heads (CHs) and optimal routes to the destination in an optimal manner with fault tolerant mechanism. The proposed EAFTC-RIS technique primarily designs Moth Flame Optimization (MFO)-based clustering scheme for CH selection and cluster construction. Also, fault tolerant mechanism is considered to further enhance the survivability of the network. In addition, Social Spider Optimization (SSO)-based routing approach is also employed for optimal selection of routes in WSN. Clustering, routing, and fault tolerant mechanism designs, with multiple input variables, result in enhanced network survivability. The proposed EAFTC-RIS technique was validated for its performance and the outcomes were inspected under various aspects. The simulation outcomes demonstrate the superiority of EAFTC-RIS technique over recent approaches namely, EAFTC-RIS, FUCCAR-GWSO, FBECS, MLSLEEP, and Bee Cluster.

Title	Efficient and Recoverable Bio-Organic Catalyst Cysteine for Synthesis, Docking Study, and Antifungal Activity of New Bio-Active 3,4- Dihydropyrimidin-2(1 H)-ones/thiones under Microwave Irradiation
Authors	Elkanzi, N.A.A., Kadry, A.M., Ryad, R.M., (), Ali El-Remaily, M.A.E.A.A., Ali, A.M.
Journal	ACS Omega 7(26), pp. 22839-22849
Abstract	An eco-friendly green bio-organic catalyst and low-cost 3,4- dihydropyrimidin-2(1H)-ones/thione derivatives 4-7 have been synthesized using a high-yield, synthetic method via a one-pot, three- component process between 4-formylphenyl-4-methylbenzenesulfonate (1), thiourea, or urea and ethyl acetoacetate or acetylacetone under microwave irradiation in aqueous media of water and ethanol (3:1 ratio) as a green solvent in the presence of cysteine as a new green bio-organic catalyst. The reaction between compound 1, 4- (carbamothioylhydrazono) methyl]phenyl 4-methyl benzenesulfonate (3c), and ethyl acetoacetate or acetylacetone under the same condition afforded novel pyrimidines. Similarly, compound 1 was allowed to react with a mixture of 4-(carbamothioylhydrazono)methyl]phenyl 4-methyl benzenesulfonate (3c) and ethyl acetoacetate or acetylacetone under the same condition to afford pyrimidine derivatives 8 and 9. Excellent yields (90-98%) were obtained within short reaction times, and problems associated with the toxic solvents used (cost, safety, and pollution) were avoided. The structures of the new compounds were elucidated by elemental and spectral analyses. All compounds were studied using molecular docking, and their antifungal activity was investigated.

كلية العلوم جامعة سو هاج

T .4	
Title	Enhanced Nitrate Ions Remediation Using Fe0 Nanoparticles from
	Underground Water: Synthesis, Characterizations, and Performance
	under Optimizing Conditions
Authors	Abdel-Lateef, H.M., Khalaf, M.M., Al-Fengary, A.ED., Elrouby, M.
Journal	Materials
	15(14),5040
Abstract	The presence of nitrates in water in large amounts is one of the most
	dangerous health issues. The greatest risk posed by nitrates is
	hemoglobin oxidation, which results in Methemoglobin in the human
	body, resulting in Methemoglobinemia. There are many ways to
	eliminate nitrates from underground water. One of the most effective
	and selective methods is using zero-valent iron (ZVI) nanoparticles. ZVI
	nanoparticles can be easily synthesized by reducing ferric or ferrous
	ions using sodium borohydride. The prepared ZVI nanoparticles were
	examined by scanning electron microscopy (SEM), energy dispersive X-
	ray spectroscopy (EDX), electron microscopy (TEM), X-ray diffraction
	(XRD), Brunauer–Emmett–Teller (BET) surface area, and zeta
	potential. We aim to eliminate or reduce the nitrates in water to be at
	the acceptable range, according to the world health organization
	(WHO), of 10.0 mg/L. Nitrate concentration in water after and before
	treatment is measured using the UV scanning method at 220 nm
	wavelength for the synthetic contaminated water and electrochemical
	c ·
	method for the naturally contaminated water. The conditions were
	optimized for obtaining an efficient removing process. The removal
	efficiency reaches about 91% at the optimized conditions.

22

	Experimental and In-Silico Computational Modeling of Cerium Oxide
Title	Nanoparticles Functionalized by Gelatin as an Eco-Friendly Anti-
	Corrosion Barrier on X60 Steel Alloys in Acidic Environments
Authors	Abd El-Lateef, H.M., Gouda, M., Khalaf, M.M., (), Shalabi, K., El-
	Shishtawy, R.M.
Journal	Polymers
	14(13),2544
Abstract	An eco-friendly and a facile route successfully prepared novel cerium
	oxide nanoparticles functionalized by gelatin. The introduced
	CeO2@gelatin was investigated in terms of FE-SEM, EDX, TEM,
	chemical mapping, FT-IR, and (TGA) thermal analyses. These
	characterization tools indicate the successful synthesis of a material
	having CeO2 and gelatin as a composite material. The prepared
	composite CeO2@gelatin was used as an environment-friendly coated
	film or X60 steel alloys in acidizing oil well medium. Moreover, the
	effect of CeO2 percent on film composition was investigated. LPR
	corrosion rate, Eocp-time, EIS, and PDP tools determined the corrosion
	protection capacity. The CeO2@gelatin composite exhibited high
	protection capacity compared to pure gelatin; in particular, 5.0%
	CeO2@gelatin coating film shows the highest protection capacity (98.2%), with long-term anticorrosive features. The % CeO2@gelatin-
	coated films formed the protective adsorbed layer on the steel interface
	by developing a strong bond among nitrogen atoms in the
	CeO2@gelatin film and the electrode interface. Surface morphology
	using FESEM measurements confirmed the high efficiency of the
	fabricated CeO2@gelatin composite on the protection X60 steel alloys.
	DFT calculations and MC simulations were explored to study the
	relations between the protection action and the molecular construction
	of the coated systems, which were in good alignment with the empirical
	findings.
	······································

Title	Optimization strategy for green synthesis of silver nanoparticles (AgNPs) as catalyst for the reduction of 2,4-dinitrophenol via supported mechanism
Authors	Abu-Dief, A.M., Abdel-Rahman, L.H., Sayed, M.A.A.–E., (), Khalifa, M.E., El-Metwaly, N.M.
Journal	Applied Physics A: Materials Science and Processing 128(7),595
Abstract	Here, we examine the biogenic fabrication of silver nanoparticles (AgNPs) utilizing a simple and environmental friendly method. Silver nanoparticles were synthesized using medicinal plants extracts such as Flamboyant (Delonix regia (DRE)) and Moringa oleifera (MOE). The maximum absorbance (λ max) of UV–Vis. analysis at 442 and 459 nm indicates the formation of MOEAgNPs and DREAgNPs, respectively. The AgNPs are confirmed by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) and XRD techniques. (FT-IR) FT-IR spectra indicate the functional groups of phytochemical compounds in silver nanoparticles (DREAgNPs, MOEAgNPs). The generation of spherical MOEAgNPs and DREAgNPs with a majority particle size of 50 and 100 nm, respectively, was confirmed by TEM analysis. The XRD pattern of AgNPs has FCC form and crystalline lattice at 20 of 38°, 44°, 64° and 77° corresponding to (111), (200), (220), and (311) reflections of AgNPs. The findings indicate that the ideal conditions for the synthesis process were 2 mMAg+ concentration, reaction time is 24 h and 60 °C for extraction. The reduction of 2,4-dinitrophenol to 2,4-diaminophenol using NaBH4 was carried out under the catalytic influence of AgNPs. The rate constant k (1st cycle) was found to be 42 × 10–3 min–1 and 26 × 10–3 min–1 for the reaction in presence of MOEAgNPs was tested for 7 cycles without loss in its activity until cycle 5. The activation energy (Ea) for reduction of 2,4-dinitrophenol that catalyzed by MOEAgNPs or DREAgNPs, respectively, was 36.4 or 31.7 kJmol–1. The successes of AgNPs in the catalytic role were supported through DFT studies. Graphical abstract: [Figure not available: see fulltext.].

Title	Black seed and rosemary nanoformulations as green insecticides for the
	granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae)
Authors	Ali, S.A., Khairy, M., Ibrahim, A.A., Zohry, N.M.H.
Journal	Journal of Food Science 87(7), pp. 3095-3106
Abstract	Abstract: The development of nano-insecticides has attracted much interest in the last decade because it has the potential to result in an alternative pest-management strategy and also reduce the risk of chemically based insecticides. Herein, native rosemary (Rosmarinus officinalis) and black seed (Nigella sativa) oils were utilized for preparing their nanoemulsions by spontaneous emulsification method in the presence of tween 80 as a structure-directing agent. The prepared nanoemulsions were explored for granary weevil, Sitophilus granarius (L.), adults control and compared with their oils. Within the typical droplet sizes of 100 and 224 nm, both rosemary and black seed nanoemulsions were found to be physically and thermodynamically stable. The insecticidal activity of the nanoemulsions was higher than that of the crude oils. After 24 h of exposure, the LD50 values of rosemary and black seed nanoemulsions were estimated to be 102.56 and 35.08 µg/g, respectively, compared to 188.95 and 210.09 µg/g of their oils. These results revealed that the droplet size and chemical composition of the nanoemulsion are the significant factors that affect their toxicity. Surprisingly, the nanoemulsions had no effect on seed germination at LD50 or even LD99. The utilization of such nanoformulations might open up a new avenue for ecofriendly pest control that is not damaging to humans or the environment, as well as a growing agricultural economy. Practical Application: The loss of cereals in postharvesting is one of the major challenges in the world because up to 50% of harvested grains might be destroyed. The intensive usage of chemicals caused harmful effects on humans and the environment. Thus, we prepared rosemary and black seed nanoemulsions and applied them for the grain weevil, S. granarius, control. The results showed superior toxicological efficacy without any effects on seed germination compared with their native oils. Such green strategy could be used instead of chemical insecticides to be environmentally safe for ani

Title	Correction to: Heavy metal pollution in Manzala Lake sediments, Egypt: sources, variability, and assessment (Environmental Monitoring and Assessment, (2022), 194, 6, (436), 10.1007/s10661-022-10081-0)
Authors	Redwan, M., Elhaddad, E.
Journal	Environmental Monitoring and Assessment 194(7),461
Abstract	Upon publication of the original article, it was noticed that in the HTML version, the winter and summer symbols of Figs. 2 and 3 were the wrong way round. The corrected Figs. 2 and 3 are shown in the next page. (Figure presented.) (Figure presented.).

Title	Electron Density and Optoelectronic Properties of Copper Antimony Sulphur Ternary Compounds for Photovoltaic Applications
Authors	Khairy, M., Jiang, P., Boulet, P., Record, MC.
Journal	Journal of Electronic Materials51(7), pp. 3903-3918
Journal	Journal of Electronic Materials51(7), pp. 5905-5916
Abstract	Design of efficient solar energy-conversion materials has attracted much interest in the last few decades. Among these materials, copper-based semiconducting chalcogenides have been employed as alternatives for copper indium gallium selenide thin-film solar cells due to their low toxicity and earth-abundant absorber components. In the present manuscript, structural, electronic, quantum theory of atoms in molecules (QTAIM) topological, and optical properties of ternary chalcogenide CuSbS2, Cu3SbS3, and Cu3SbS4 have been investigated using the full potential linear augmented plane wave method. An indirect band gap is observed for CuSbS2 with Eg = 1.18 eV and a direct band gap is found for Cu3SbS3, and Cu3SbS4 with Eg = 1.28 and 1.0 eV, respectively. The valence band maximum of CuSbS2, Cu3SbS3, and Cu3SbS4 are mainly predominated by a strong Cu-3d and S-3p orbitals hybridization. The conduction band of CuSbS2 and Cu3SbS3 are mainly characterized by Sb-5p orbital and S-3p orbital mixing. However, conduction band of Cu3SbS4 is dominated by the mixing of Sb-5s and S-3p orbitals. It is found that the Cu-S and Sb-S bonds lie in the transit closed-shell zone, between the typical ionic and covalent bonds, the Cu-S bonds being more ionic in nature and the Sb-S bonds being more covalent. The optical properties of CuSbS2, Cu3SbS3, and Cu3SbS4 in terms of absorption coefficient, extinction coefficient, refractive index, and reflectivity have been investigated. It is found that Cu3SbS4 is probably less suitable for optical application than CuSbS2 and Cu3SbS3 as the chemical bonds in Cu3SbS4 are seemingly less polarizable, as assumed from the QTAIM analysis, which seems to be correlated with a lower absorption coefficient.

Title	Poly(m-toluidine)/rolled graphene oxide nanocomposite photocathode for hydrogen generation from wastewater
Authors	Rabia, M., Hadia, N.M.A., Farid, O.M., (), Mohamed, S.H., Shaban, M.
Journal	International Journal of Energy Research46(9), pp. 11943-11956
Abstract	This study provides hydrogen gas fuel as a renewable energy source. The production of H2 was carried out through the photocatalytic decomposition of sewage water using highly efficient poly(m-toluidine) (PMT)/rolled graphene oxide (roll-GO) as photoelectrode. The preparation of PMT thin film was carried out on glass using the in situ electropolymerization reaction from an acid medium. Then, the roll-GO was deposited on this thin film using the casting method from the GO solution. The full characteristic analyses Fourier-transform infrared, X-ray diffraction, scanning electron microscope, transmitted electron microscope, and UV-Vis spectroscopy confirmed the chemical structural, morphological, and optical properties of the prepared nanomaterials. The morphology characteristic confirmed the formation of nanopores PMT, roll-GO, and rolled porous nanocomposite. The bandgap values for PMT, roll-GO, and PMT/roll-GO with a current density (Jph) value of 0.08 mA.cm-2 at +1 V, with hydrogen moles of 10 µmole/h.cm-2. The Jph values changed from 0.078 to 0.053 mA.cm-2 which his followed by an increase in the temperature from 20°C to 60°C, respectively. The hph values increased from 0.078 to 0.295 mA.cm-2 which his followed by an increase in the temperature from 20°C to 60°C, respectively. The thermodynamic parameters were calculated, in which the Ea, ΔS^* , and ΔH^* values were 27.3 kJ/mol, 188.3 J/mol.K, and 24.7 kJ/mol, respectively. The wettability was studied for the PMT and PMT/roll-GO films, in which the contact angles were changed from 92° to 41°, respectively. Finally, the mechanism was used for the explanation of the water-splitting reaction using the PMT/roll-GO photoelectrode under the light.

Title	Composite adsorbent materials for desalination and cooling applications: A state of the art
Authors	Alsaman, A.S., Ibrahim, E.M.M., Ahmed, M.S., Askalany, A.A.
Journal	International Journal of Energy Research 46(8), pp. 10345-10371
Abstract	Adsorption technology is very attractive for producing desalinated water and cooling with no harmful impact on the environment. The performance of adsorption water applications (desalination and cooling) depends on the adsorption characteristics. Many adsorption systems designs were investigated worldwide, employing different adsorbent materials to develop a cost-effective and high-performance system. This review presents and summarizes the studies in adsorption and the corresponding applications in desalination and cooling and compares the adsorption properties of composite adsorbents. The review focuses on the composite materials and how they were synthesized while comparing them in terms of the amount of adsorption. The reviewed materials have been classified according to the basic host, such as silica gel, zeolite, carbon, metal-organic frameworks (MOF), and vermiculite. The review contains more than 70 composites. The maximum reached water vapor uptake is 1.92 kg/kg of PHTS/CaCl2-20 wt% composite at 0.9 P/Ps. The highest available desorption amount is 1.48 kg/kg of MOF composite for desalination applications.

Title	Superhydrophobic films-based nonanyl carboxy methylcellulose grafted polyacrylamide for AISI-stainless steel corrosion protection: Empirical explorations and computational models
Authors	Abd El-Lateef, H.M., Gouda, M., Shalabi, K., Al-Omair, M.A., Khalaf, M.M.
Journal	Journal of Molecular Liquids356,119063
Abstract	The current work offers an alternate environmental and facile technique to fabricate a thin coating based on the superhydrophobic film of Nonanyl carboxy methylcellulose grafted polyacrylamide (NCMC-g-PAAm-SB) which could be applied as protective layers for AISI-stainless steel corrosion. FTIR and FESEM apparatuses were used to characterize the synthesized NCMC-g-PAAm-SB. Furthermore, water uptake measurements were tested to prove the hydrophobicity character of NCMCPAAm. The thermal permanence of the NCMC-g-PAAm-SB was detected by thermo-gravimetric examination (TGA) display thermal steadiness up to 250 °C. The anticorrosive performance of the pristine and coated AISI-steel was estimated in a combination of diverse chloride solution, 3.5% NaCl + 1.0 M HCl. PDP, EIS, and potential-time experiments were performed to assess the corrosion protection features. Moreover, LPR corrosion rate tests were completed for the long-term to determine the stability of coating films in the corrosive medium. The impact of the film thickness (number of coating layers) on the corrosion characteristics was inspected. The total polarization resistance increased to 1560.3 Ω cm2 for AISI-steel coated with the NCMC-g-PAAm-SB five layers compared to 55.8 Ω cm2 for pristine AISI-steel, displayed outstanding anticorrosion behavior with 96.4% of protection capacity. FESEM was utilized to describe the surface topology of the uncoated and coated AISI-steel samples before and after exposure in the aggressive medium. The computational models were accomplished to extremely examine the corrosion protection coating mechanism of AISI-steel. Owing to their remarkable physicochemical characteristics, such superhydrophobic films are an economically and innovative accessible substitute to progress the stainless of AISI-steel corrosion resistance and can be utilized in steel protection in acidic chloride environments.

Title	Microplastic and Nanoplastic Interactions with Plant Species: Trends,
	Meta-Analysis, and Perspectives
Authors	Azeem, I., Adeel, M., Ahmad, M.A., (), Ming, X., Rui, Y.
Journal	Environmental Science and Technology Letters
	9(6), pp. 482-492
Abstract	The ubiquitous presence of nanoplastics (NPx) and microplastics (MPx)
	in the environment has been demonstrated, and as such, the exposure
	scenarios, mechanisms of plant response, and ultimate risk must be
	determined. Here, we performed a meta-analysis of the most recent
	literature investigating the effect of MPx/NPx on plant species under
	laboratory and field conditions so as to evaluate the current state of
	knowledge. Effects of MPx/NPx exposure in plants vary as a function of
	plant species, and interestingly, nonsignificant responses are reported in
	staple crops. We found that NPx (<100 nm) more negatively affected
	plant development parameters, photosynthetic pigments, and
	biochemical indicators than did MPx (>100 nm). Surprisingly, NPx
	exposure exhibited negligible effects on germination rate, although root
	morphology was negatively affected. Alternatively, MPx negatively
	affected (14%) germination and generally exhibited nonsignificant
	effects on root morphology. The effect of MPx/NPx on plant health
	decreases with increasing exposure time. No specific trends were evident
	for the production of biochemical enzymes as related to MPx/NPx
	concentration or size. Furthermore, we provided a framework for
	additional investigative work to address the knowledge gaps and to
	enable accurate assessment of the fate and risk of these materials to
	environmental and human health.

Title	Heavy metal pollution in Manzala Lake sediments, Egypt: sources, variability, and assessment
Authors	Redwan, M., Elhaddad, E.
Journal	Environmental Monitoring and Assessment 194(6),436
Abstract	The environmental pollution of lake systems due to anthropogenic factors is of growing concern worldwide. Manzala Lake is the largest northern coastal-deltaic lakes of Egypt and has socioeconomic impacts. In this study, the concentrations and origins of seven heavy metals (HMs) and the organic content in the Manzala Lake sediments were explored during the winter and summer. The concentration of the HMs and the organic content were quantified using inductively coupled plasma and loss-on-ignition techniques. Pearson's correlation coefficient (PCC) and principal component analysis (PCA) were applied to evaluate the sources of the metals in the sediments. The HMs and organic matter were enriched during the winter season. The average concentrations of the HMs in the sediments conformed to the following sequence: Fe (14.13) > Mn (0.8) > Cu (0.11) > Zn (0.11) > Ni (0.06) > Pb (0.5) > Cd (0.002) (mg/kg). Sediment quality protocols showed that Mn, Cd, Cu, and Ni pose a significant threat to the aquatic environment in Manzala Lake. The geoaccumulation index (Igeo) values indicated pollution of the sediments with most metals, excluding Fe and Ni. The periodic mean Igeo pollution level followed the sequence Cd > Cu > Zn > Mn > Pb > Ni > Fe. The greatest pollution load index noted during the winter season was principally induced by Cd and Cu. The overall ecological risk index was moderate, with Cd being the most prominent HM. PCA combined with PCC showed that the HM enrichments in the southern (Bahr Al-Baqar Drain [S1], Bashteer [S3], Legan [S5], and Al-Ginka [S8]) and the extreme northeastern (El-Qapouti [S6]) parts of Manzala Lake sediments were mainly due to the discharge from different drains (industrial, agricultural, and municipal wastes) and the industrial region in Port Said, respectively. The lower HM concentrations from the extreme northern parts (Al-Boghaz [S2], Al-Temsah [S4], Al-Hamra [S7], and Al-Kowar [S9]) were due to their isolation from urban areas compared with the other localities. Extensive waste dispo

Title	Simple development of eco-friendly dye-sensitized solar cells via controlling thickness of TiO2 nanoparticles and viscosity of electrolyte: Experimental study and DFT calculations
Authors	Al Bin saleh, H., Abd El-Lateef, H.M., Bakir, E.
Journal	Inorganic Chemistry Communications140,109472
Abstract	The pigments (N3 dye, anthocyanin, and oleandrin) that absorb light in the visible region, change electrolyte viscosity KI/I2 by adding polyethylene glycol (PEG), and the painting method of TiO2 using the spray and doctor-blade methods was studied. The ultraviolet–visible (UV–VIS) spectra of natural dyes showed strong bands in the visible regions at 350–450 nm. The Fourier-transform infrared (FTIR) spectra confirmed the formation of the N3-triodide complex which was not observed for the other natural dyes. The impact of the changing of viscosity by the addition of PEG improved the current flow in dye- sensitive solar cells (DSSCs). Scanning electron microscopy (SEM) images showed a homogenous and thin film of TiO2 by using the spray method. The efficiency of N3-DSSCs jumped and reached 0.2770% by the sprayed method in PEG-KI/I2 electrolyte. The efficiencies of 0.195 and 0.089 % for BB and NO-DSSCs were recorded in PEG-KI/I2 electrolytes, respectively. A low-cost carbon counter electrode was used in fabricating for DSSCs. The reduction in the values of RSH (shunt resistance) had a negative impact on the performance of DSSCs. Density functional theory (DFT) calculations were studied for optimized geometry of the three dyes. The chemical potential μ of N3 was greater than that of anthocyanin, and oleandrin which reflects the ability of electrons to exchange with TiO2. The Eg (energy gap) of N3 got to a height that slowed the rate of recombination of electron-hole of dye. The electronic chemical potential (μ) and energy gap (Eg) are effective to improve the efficiency of DSSCs.

Title	Promoted catalytic potential in sulfides oxidation and biological screening of green Pd (II) and Co (II) complexes of salicylidene isatin hydrazone ligand
Authors	Adam, M.S.S., Makhlouf, M.M., Mohamed, M.A., Desoky M. Mohamad, A.
Journal	Applied Organometallic Chemistry36(6),e6688
Abstract	Mononucleating complexes of isatin hydrazone sodium sulfonate ligand (HLn) with palladium (II) and cobalt (II) ions: The complexes were synthesized within 1:1 and 2:1 molar ratio of HLn with Pd2+and Co2+ion in PdLn and Co (Ln)2, respectively. The catalytic reactivity of both complexes was examined in the oxidation of sulfides (diphenyl sulfide, dps, and methylphenyl sulfide, mps) using hydrogen peroxide under aerobic conditions. Oxoproducts, dipheylsufoxide, dpo, and methyl phenyl sulfoxide, mpo, are the chemoselective products with detection of large amounts of the unselective further oxidation products of dioxoproducts (dipheylsufone, dpn, and methylphenyl sulfone, mpn). The homogenous catalyst of Co (Ln)2revealed more efficient action compared to that of PdLn depending on the high electrochemical reversible potential of the central metal ion in the catalytic reactivity of HLn, PdLn, and Co (Ln)2was illustrated within some commonly well-known bacteria and fungi strains. Additionally, they were involved as anticancer reagents against some human cancer cell lines in vitro. Both metal complexes presented high inhibited action versus the growth of the studied microorganism and cancer. The interaction effect of Pd2+and Co2+ions in their pincer complexes was tested with calf thymus DNA spectroscopically and via the viscosity changes.

Title	Interactive effects of dietary betaine and chromium picolinate on the immunomodulation, antioxidative response and disease resistance of Nile tilapia (Oreochromis niloticus)
Authors	Risha, E., Ahmed, F., Khaled, A.A., (), Akhtar, N., Zahran, E.
Journal	Aquaculture Research53(9), pp. 3464-3477
Abstract	Fish feed additives are recently encouraged to improve cultured fish health and production. Dietary supplementation with betaine (Bet) and chromium picolinate (Cr-Pic) is known for its high quality for the benefit of aquaculture. A total of 180 healthy and equal-sized O. niloticus were fed on a non-supplemented basal diet, or a basal diet supplemented with Bet (10g/kg dry feed) (Bet group) or Cr-Pic (800 µg/kg dry feed) (Cr-Pic group) or their combination at the same dosing regimens (Bet + Cr-Pic group) for 6 weeks feeding trial. Our findings revealed that dietary supplementation with Bet and/or Cr-Pic enhanced the non-specific immune parameters of O. niloticus in different manners in all supplemented groups compared to the control group. Bet + Cr-Pic group came over the other two groups and recorded the more pronounced highest level of these immune-relevant parameters. In addition, the antioxidative activity of the serum and tissue homogenates of all the supplemented fish was enhanced. The muscular malondialdehyde (MDA) was significantly decreased, with a nominal decrease in the hepatic one; whereas antioxidant enzyme activities (catalase/CAT), reduced glutathione/GSH), glutathione peroxidase/GPx) and superoxide dismutase/SOD) were all increased significantly in the muscular and hepatic tissues of the supplemented fish groups compared to the control group. The serum cortisol level was significantly decreased in all supplemented groups compared to the control group. Therefore, dietary supplementation with Bet and Cr-Pic combination is a promising feed additive for their additive effects improving fish immune response and antioxidative status and aquaculture sustainability.

Title	Effect of Azospirillum and Azotobacter Species on the Performance of Cherry Tomato under Different Salinity Levels [Auswirkungen von Azospirillum- und Azotobacter-Spezies auf die Leistung von Kirschtomaten bei unterschiedlichen Versalzungsgraden]
Authors	El-Beltagi, H.S., Ahmad, I., Basit, A., (), Kandeel, M., Zohaib Ikram, M.
Journal	Gesunde Pflanzen 74(2), pp. 487-499
Abstract	Abiotic stress has a negative impact on plant physiology, influencing the overall growth and development of plant crops. Saline stress is one of the most serious environmental issues limiting crop plant production. Biofertilizers are reparative elements used in soil to increase tolerance to salinity and drought stress. We investigated the effect of salinity stress on qualitative and quantitative characteristics of cherry tomato plants (Lycopersicon esculentum cerasiforme) with biofertilizer application 0, 15 and 30 days after transplanting in this study. After different days of transplantation, different levels of salinity (0, 50, 100, and 150 mM) were used with biofertilizer (Azospirillum sp. and Azotobacter sp.) application (0, 15 and 30 days). The salinity (150 mM NaCl) significantly affected the studied variables, which were recorded with minimum levels of leaf area (52.42 cm2), root length (6.54 cm), fresh root weight (13.64 g), yield (6.52 tons/ha), leaf chlorophyll content (36.11 mg/m2) and maximum levels of total soluble solids (TSS, 8.87 "Brix). Control samples had higher leaf area (58.35 cm2), root length (15.23 cm), fresh root weight (17.86 g), yield (9.39 tons/ha), leaf chlorophyll content (44.09 mg/m2), and lower TSS (7.93 "Brix). Plants that received biofertilizer (15 days after transplanting) had higher plant height (73.41 cm), stem diameter (0.74 cm), leaf area (61.16 cm2), root length (15.35 cm), fresh root weight (18.38 g), root dry matter (60.41%), yield (51.33 cm), stem diameter (0.55 cm), leaf area (49.60 cm2), root length (7.04 cm), fresh root weight (12.76 g), root dry matter (42.16 g), yield (5.15 tons/ha), leaf chlorophyll content (35.18 mg/m2), fruit dry matter content (6.59 g), pH 4.27 and TSS (7.55 Brix) were recorded in plants with no application of biofertilizer application at 15 days significantly influences the quantitative and qualitative attributes of cherry tomato under different levels of salinity.

Title	Dietary Feeding Lycopene, Citric Acid, and Chlorella Alleviated the Neurotoxicity of Polyethylene Microplastics in African Catfish (Clarias gariepinus)
Authors	Hamed, M., Soliman, H.A.M., Eid, Z., Al Naggar, Y., Sayed, A.ED.H.
Journal	Frontiers in Environmental Science 10,869727
Abstract	A few studies assessed how natural products can protect fish from the neurotoxic effects of Microplastics (MPs). Therefore, the goal of this study was to look into the neurotoxicity of PE-MPs on the brain tissue of African catfish (C. gariepinus), and whether dietary feeding on Chlorella, citric acid, and lycopene could help alleviate their toxicity. Five groups of fish were used: The first group received a standard diet (control). The second group was fed 500 mg/kg PE-MP. The third group was fed PE-MP + lycopene (500 mg/kg diet). The fourth group was fed PE-MP + citric acid (30 g/kg diet). And the fifth group was fed PE-MP + Chlorella (50 g/kg diet) for 15 days. The activities of Acetylcholinesterase (Ach), Monoamine Oxidase (MAO), Aldehyde Oxidase (AO), and Nitric Oxide (NO), and the histological effect on brain tissues were then assessed. The activity of the four neurological biomarker enzymes investigated was altered significantly in fish subjected to PE-MP alone compared with the control group. For fish exposed to PE-MP with lycopene, citric acid, or Chlorella, the activities of these neurological enzymes significantly improved particularly with Chlorella compared with fish fed PE-MP individually. Histological investigations illustrated that being subjected to PE-MPs effected cellular alterations in the telencephalon, including diffuse distorted and degraded neurons, encephalomalacia, aggregated neuroglial cells (gliosis), as well as deformed and necrotic neurons, neuropil vacuolation (spongiosis), aggregated neuroglial cells (gliosis), pyknotic neurons, and shrunken Purkinje cells which were found in the cerebellum. Most histological alterations induced by exposure to PE-MP feeding were restored by dietary feeding on Chlorella, citric acid, and lycopene. Accordingly, this study recommends using citric acid, lycopene, and Chlorella as a natural remedy against MP neurotoxicity particularly

Title	Optical and recombination losses in CIGS thin-film solar cell and
	efficiency enhancement methods
Authors	Mohamed, H.A., Shokr, E.K., Wakkad, M.M., Hadia, N.M.A., Taya,
	Y.A.
Journal	Optoelectronics and Advanced Materials, Rapid Communications 16(5-6), pp. 209-219
Abstract	A theoretical analysis of the optical and recombination losses effect on
	the performance of the solar cell with the structure ZnO:Al/CdS/CIGS/Mo/Glass has been accomplished in this work. All
	the results are carried out on the basis of the variation of Ga-ratio and
	the low thickness of the absorber layer ranged from 250 nm to 1 µm.
	The optical parameters (refractive index, extinction coefficient and
	energy gap) resulting from the experimental investigation of the used
	materials are the base to calculate the optical losses caused by the
	reflection at different interfaces and absorption in ZnO:Al and CdS
	layers. The calculations of the recombination losses at the front and
	back surface of CIGS are carried out on the basis of some physical parameters of CIGS layer. The effect of antireflection coating layer and
	the reflectivity from back contact have been studied to improve the
	performance of CIGS solar cell. The results show that Ga-ratio of 0.3
	has the maximum short-circuit current density of 16.46 mA/cm2 and at
	the same time this ratio represents optical losses of about 35 %, these losses have been increased up to 59.5 due to non-absorption losses. It is
	found that the thickness of CIGS layer has a significant effect on the
	performance of this solar cell. Under the consideration of antireflection
	layer, reflectivity from back contact and at certain parameters of the
	absorber layer, the recorded efficiency of thin-film CIGS solar cell
	reached a value of 18.12%.

Title	An Experimental Study on Geotechnical Properties and Micro- Structure of Expansive Soil Stabilized with Waste Granite Dust
Authors	Abdelkader, H.A.M., Ahmed, A.S.A., Hussein, M.M.A., Ye, H., Zhang, J.
Journal	(Sustainability (Switzerland 14(10),6218
Abstract	Mining industries around the world produce massive amounts of solid waste that has potential environmental impacts. Therefore, it is necessary to explore alternative solutions to this waste disposal problem and to obtain economic benefits from it. Up to now, no significant attempts have been made to use granite dust (GD) as a soil stabilizer. GD is a by-product produced in large amounts during the cutting and processing of granite rocks at manufacturing factories. Thus, an attempt has been made here to define the role of GD in enhancing the geotechnical behaviour of expansive soil in order to make it suitable for construction. Moreover, the aim of this study is to evaluate the micro- level alterations occurring in the soil to elucidate the stabilization mechanism of granite dust-soil interaction. Comprehensive geotechnical tests, such as Atterberg limits, compaction characteristics, unconfined compressive strength (UCS), California bearing ratio (CBR), and swelling percentage, as well as microstructural analysis, such as X-ray diffraction, scanning electron microscopy, energy, and Fourier transform infrared, have been performed on natural and stabilized expansive soils using different portions of GD ranges from 0% to 30% with an increment of 5%. The results showed that the GD can be effectively used to improve soil plasticity and to control the swelling behaviour. Additionally, the results indicated that both UCS and CBR increase with increasing the content of GD, after which it decreases. Hence, this amount can be taken as the optimum value of GD. The micro-analyses confirmed that the apparent formation of some new peaks, changes in the soil morphology, and alterations in the parent elements are the major factors in controlling the interactive behaviour of soil-GD mixes.

Title	Nanostructured P-doped activated carbon with improved mesoporous texture derived from biomass for enhanced adsorption of industrial cationic dye contaminants
Authors	Khalil, K.M.S., Elhamdy, W.A., Mohammed, K.M.H., Said, A.EA.A.
Journal	Materials Chemistry and Physics 282,125881
Abstract	Developing of high-performance carbonaceous materials from biomass is a significant contemporary research subject to meet the increasing demand for functional adsorbents with low price, high available and sustainability for adsorptive removal processes of industrial pollutants. The present work investigates formation of nanostructured surface modified P-doped activated carbon (ACP) materials via thermochemical activation of orange peel (OP) biomass residual materials, by phosphoric acid, H3PO4. Different impregnation ratios of phosphoric acid to OP (w/w) were investigated at different activation temperatures (400–800 °C). The formed ACP materials were characterized by TGA–DTA, FTIR–ATR, Raman spectroscopy, XRD, N2 gas adsorption/desorption, HR–TEM microscopy, EDX and elemental surface mapping. The results indicated that ACP materials were structured in the form of plate-like nanoparticles of amorphous graphite that composed of few graphene layers. The ACP materials exhibited high surface area (up to 1700 m2/g) with high contribution from mesoporosity (up to 94%) of slit-like pore shape. The point of zero charge was found at pH of 6.3, which permits application at neutral adsorption conditions. The formed ACP adsorbents exhibited distinguished adsorption capacities, qads, for methylene blue (MB) with successful recyclability. The adsorption capacities were enhanced (up to qads = 452 mg/g) for the materials formed at high acid impregnation ration and activated at high temperatures. The adsorption process of MB was spontaneous, fits with the Langmuir adsorption isotherm and pseudo-second-order kinetic. The high adsorption capacities for the ACP adsorbents were correlated with their micro/nano-structures, which were dominated by nano plate–like amorphous graphite particles composed of few graphene–like layers.

Title	Regression Modeling Strategies to Predict and Manage Potato Leaf Roll Virus Disease Incidence and Its Vector
Authors	Ali, Y., Raza, A., Aatif, H.M., (), Amer, M.A., Moustafa, M.
Journal	(Agriculture (Switzerland12(4),550
Abstract	The potato leaf roll virus (PLRV) disease is a serious threat to successful potato production and is mainly controlled by integrated disease management; however, the use of chemicals is excessive and nonjudicious, and it could be rationalized using a predictive model based on meteorological variables. The goal of the present investigation was to develop a disease predictive model based on environmental responses viz. minimum and maximum temperature, rainfall and relative humidity. The relationship between epidemiological variables and PLRV disease incidence was determined by correlation analysis, and a stepwise multiple regression was used to develop a model. For this purpose, five years (2010–2015) of data regarding disease incidence and epidemiological variables collected from the Plant Virology Section Ayub Agriculture Research Institute (AARI) Faisalabad were used. The model exhibited 94% variability in disease development. The predictions of the model were evaluated based on two statistical indices, residual (%) and root mean square error (RMSE), which were $\leq\pm20$, indicating that the model was able to predict disease development. The model was validated by a two-year (2015–2017) data set of epidemiological variables and disease incidence collected in Faisalabad, Pakistan. The homogeneity of the regression equations of the two models, five years ($Y = -28.93 - 0.148x1 + 0.510x2 + 0.83x3 + 0.569x4$), demonstrated that they validated each other. Scatter plots indicated that minimum temperature (5–18.5°C), maximum temperature (19.1–34.4°C), rainfall (3–5 mm) and relative humidity (35–85%) contributed significantly to disease development. The foliar application of salicylic acid alone and in combination with other treatments significantly reduced the PLRV disease incidence and its vector population over control. The salicylic acid together with acetamiprid proved the most effective treatment against PLRV disease incidence and its vector M. persicae.

Title	Removal of the Harmful Nitrate Anions from Potable Water Using
	Different Methods and Materials, Including Zero-Valent Iron
Authors	Abd El-Lateef, H.M., Khalaf, M.M., Al-Fengary, A.ED., Elrouby, M.
Journal	Molecules 27(8),2552
Abstract	Drinking water containing nitrate ions at a higher concentration level of more than 10 mg/L, according to the World Health Organization (WHO), poses a considerable peril to humans. This danger lies in its reduction of nitrite ions. These ions cause methemoglobinemia during the oxidation of hemoglobin into methemoglobin. Many protocols can be applied to the remediation of nitrate ions from hydra solutions such as Zn metal and amino sulfonic acid. Furthermore, the electrochemical process is a potent protocol that is useful for this purpose. Designing varying parameters, such as the type of cathodic electrode (Sn, Al, Fe, Cu), the type of electrolyte, and its concentration, temperature, pH, and current density, can give the best conditions to eliminate the nitrate as a pollutant. Moreover, the use of accessible, functional, and inexpensive adsorbents such as granular ferric hydroxide, modified zeolite, rice chaff, chitosan, perlite, red mud, and activated carbon are considered a possible approach for nitrate removal. Additionally, biological denitrification is considered one of the most promising methodologies attributable to its outstanding performance. Among these powerful methods and materials exist zero-valent iron (ZVI), which is used effectively in the deletion process of nitrate ions. Non-precious synthesis pathways are utilized to reduce the Fe2+ or Fe3+ ions by borohydride to obtain ZVI. The structural and morphological characteristics of ZVI are elucidated using UV–Vis spectroscopy, zeta potential, XRD, FE- SEM, and TEM. The adsorptive properties are estimated through batch experiments, which are achieved to control the feasibility of ZVI as an adsorbent under the effects of Fe0 dose, concentration of NO3 ⁻ ions, and pH. The obtained literature findings recommend that ZVI is an appropriate applicant adsorbent for the remediation of nitrate ions.

Title	Landslide susceptibility mapping using CNN-1D and 2D deep learning
	algorithms: comparison of their performance at Asir Region, KSA
Authors	Youssef, A.M., Pradhan, B., Dikshit, A., (), Matar, S.S., Mahdi, A.M.
Journal	Bulletin of Engineering Geology and the Environment81(4),165
Abstract	To be proactive in mountain hazard mitigation, landslide disaster
	assessments are becoming increasingly urgent. In this study, three
	modeling techniques, namely, support vector machine (SVM),
	convolutional neural network (CNN-1D), and (CNN-2D), were applied
	and their outcomes were compared for landslide susceptibility mapping
	at Asir Region, Saudi Arabia. As a first step, a landslide inventory map
	was developed from various data sources. A total of 181 landslide points
	were identified and divided into 70% training and 30% validation
	datasets. Thirteen landslide indicator factors (LIFs) were used,
	including elevation, aspect, distance to fault, geology, land use, plan and
	profile curvature, distance to road, slope length (LS), stream power
	index (SPI), topographic witness index (TWI), slope angle, and distance to streams. Experimental results of model accuracy using receiver
	operating characteristics and area under the curve (ROC, AUC), mean
	absolute error (MAE), and kappa index (K) showed that the CNN-1D
	and CNN-2D models (ROC = 86% and 89% , respectively) were more
	accurate than conventional machine learning model (SVM) (ROC =
	82%) in predicting landslides spatially. Specifically, the results showed
	that CNN-1D and CNN-2D were 4.9% and 7.9% better than support
	vector machine (SVM) in terms of ROC, and that CNN-2D was 3.5%
	better than CNN-1D. Moreover, other statistical indices showed that
	CNN-2D produce the highest value of kappa index (0.855) and lowest
	value of mean absolute error (0.072), whereas SVM provides the lowest
	value of kappa index (0.562) and highest value of mean absolute error
	(0.223). Results indicate that the CNN-2D model is the optimal model
	for landslide susceptibility mapping. The generated hazard maps are a
	crucial step in landslide prevention and management to identify the
	future landslides and avoid potentially problematic areas.

Title	A Survey of IoT-Based Fall Detection for Aiding Elderly Care: Sensors,
	Methods, Challenges and Future Trends
Authors	Karar, M.E., Shehata, H.I., Reyad, O.
Journal	(Applied Sciences (Switzerland12(7),3276
Abstract	Remote monitoring of a fall condition or activities and daily life (ADL)
	of elderly patients has become one of the essential purposes for modern
	telemedicine. Internet of Things (IoT) and artificial intelligence (AI)
	techniques, including machine and deep learning models, have been
	recently applied in the medical field to automate the diagnosis
	procedures of abnormal and diseased cases. They also have many other
	applications, including the real-time identification of fall accidents in
	elderly patients. The goal of this article is to review recent research
	whose focus is to develop AI algorithms and methods of fall detection
	systems (FDS) in the IoT environment. In addition, the usability of
	different sensor types, such as gyroscopes and accelerometers in
	smartwatches, is described and discussed with the current limitations
	and challenges for realizing successful FDSs. The availability problem of
	public fall datasets for evaluating the proposed detection algorithms are
	also addressed in this study. Finally, this article is concluded by
	proposing advanced techniques such as lightweight deep models as one
	of the solutions and prospects of futuristic smart IoT-enabled systems
	for accurate fall detection in the elderly.

Title	Green Biogenic Synthesis of Silver Nanoparticles Using Aqueous Extract of Moringa Oleifera: Access to a Powerful Antimicrobial, Anticancer, Pesticidal and Catalytic Agents
Authors	Abdel-Rahman, L.H., Al-Farhan, B.S., Abou El-ezz, D., (), Zikry, M.M., Abu-Dief, A.M.
Journal	Journal of Inorganic and Organometallic Polymers and Materials 32(4), pp. 1422-1435
Abstract	In this study, we look into the biogenic synthesis of (AgNPs) utilizing a simple and environmentally friendly method based on an aqueous extract of Moringa Oleifera (MO). The synthesized MOAgNPs were characterized using a UV–Visible spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra and TEM image which confirmed the spherical shape of MOAgNPs with particle size range of 5–50 nm with an average particle size of 38.7 nm. Significantly, the prepared MOAgNPs showed high pesticidal activity towards Spodoptera littoralis. MOAgNPs also exhibited strong antibacterial activities against Gram-positive and Gram-negative bacteria. The prepared MOAgNPs were screened for their cytotoxic effect against (HCT-116), (HepG-2) and (MCF-7) carcinoma cell lines. Finally, the synthesized MOAgNPs have been used as a catalyst for the reduction of 2,4-Dinitrophenol using NaBH4 to 2,4-Diaminophenol. Taken together, the outstanding catalytic and biological activities of the synthesized MOAgNPs entitled them for applications as catalyst, pesticidal, antibacterial and anticancer agents in medical applications.

Title	Formation of improved activated carbons from sugarcane bagasse as
	environmental materials for adsorption of phenolic pollutants
Authors	Khalil, K.M.S., Khairy, M., Allam, O.A.S., Khalil, M.K.
Journal	International Journal of Environmental Science and Technology
	19(4), pp. 3103-3116
Abstract	Phenolic pollutants are very toxic and their removal from aquatic
	resources is very important. Adsorption by activated carbon, AC, is the
	best method for removal of phenols from solutions. However, the high
	cost of AC and difficulty of its regeneration after phenol adsorption puts
	high demand on low price AC materials. Therefore, sugarcane bagasse
	as a sustainable, bulky and fibrous biomass was selected for the purpose
	of low-price AC formation for phenols adsorption. Sugarcane bagasse
	derived activated carbon, BAC, was achieved via an environmental
	thermo-chemical activation process using ZnCl2 followed by pyrolysis
	at different temperatures (400–600 °C). The formed BAC materials
	were characterized by elemental analysis, simultaneous TGA-DTA,
	ATR-FTIR, XRD, Raman spectroscopy, SEM, and nitrogen
	adsorption/desorption techniques. The BAC materials showed several
	enhanced characteristics including extra high specific surface area (up
	to 2046 m2/g), improved meso-/microporosity dual system and
	nanostructured graphitic-like structure composed of few graphene
	layers. Adsorption removal of phenol as an industrial waste pollutant
	was investigated from solutions of wide range of concentrations (50-
	1000 mg/L). The adsorption processes were characterized by (L2) class
	of adsorption isotherm, Langmuir isotherm model, physical-adsorption
	thermochemical parameters and pseudo-second-order kinetics.
	Adsorptions of two other substituted phenols (resorcinol and pyrogallol)
	were investigated. The adsorption capacity was increased with
	increasing of intramolecular bonding of the adsorbate in the order of
	phenol < resorcinol < pyrogallol. The present results emphasized the
	versatility of the formed BACs as environmentally sustainable
	adsorbent for phenolic pollutants.

Title	Optimized thermoelectric performance in thin (Bi2Se3)1-x(Bi2Te3)x
	alloyed films
Authors	Adam, A.M., Diab, A.K., Ataalla, M., (), Alharbi, A.N., Elsehly, E.M.
Journal	Journal of Alloys and Compounds 898,162888
Abstract	Herein, thin films of (Bi2Se3)1–x(Bi2Te3)x were synthesized by thermal evaporation in high vacuum using highly crystalline bulk samples of Bi2Se3 alloyed with Bi2Te3. Preparation and characterization together with probing the thermoelectric properties of thin (Bi2Se3)1–x(Bi2Te3)x films are discussed in this article. Crystal structure, surface morphology, roughness and lattice features of the deposited films were probed via XRD, SEM and HRTEM techniques, which confirmed the perfect crystallinity and the nano-scalability of the prepared thin films. Thermoelectric measurements were carried out for the as-deposited films within a temperature range of 300–473 K. Seebeck coefficient of the studied samples is about two times larger than that of the previously reported bulk samples. The highest power factor was recorded at 131 μ W/m K2 at 473 K. The high value of the power factor shows that the materials under the study are promising for applications such as resource recovery of waste and also as nanomaterials for environmental applications. Very low electronic thermal conductivity was obtained due
	to the small electrical conductivity and due to the scattering of carriers
	by the tiny grains constituting the prepared films.

Title	Advanced Oxidation Processes Using Zinc Oxide Nanocatalyst for Detoxification of Some Highly Toxic Insecticides in an Aquatic System Combined With Improving Water Quality Parameters
Authors	Massoud, A., El-Mehasseb, I., Saad Allah, M., (), S. Ahmed, M., Derbalah, A.S.
Journal	Frontiers in Environmental Science 10,807290
Abstract	Pesticides are among the major organic pollutants, and their random extensive applications threaten human health and ecosystems. Clearly, detoxification of toxic insecticides from the aquatic system remains a global priority. In the present study, a zinc oxide nanocatalyst was synthesized with suitable properties to achieve complete degradation of some insecticides (dimethoate and methomyl) from aqueous media. The ZnO catalyst was used in normal and in nano-size as a part of an advanced oxidation process in the presence of H2O2 and UV rays. The complete detoxification of the tested pesticides after treatment with the most effective process (ZnO(s)/H2O2/UV) was then examined by exploring the biochemical and histopathological changes in the liver and kidneys of treated rats compared to the control. The effect of water treatment by ZnO (nano)/H2O2/UV on the water quality parameters of treated water was also investigated. Interestingly, the present study reported that the degradation rates of the investigated insecticides were faster using the nano-sized ZnO catalyst than the regular ZnO catalyst. In this respect, complete decomposition of the tested insecticides (100%) under the ZnO(s)/H2O2/UV system was achieved after 320 min of irradiation. The half-lives of the tested insecticides under ZnO(c)/H2O2/UV were 43.86 and 36.28 for dimethoate and methomyl, respectively, while under the ZnO(c)/H2O2/UV system, the half-live values were 27.72 and 19.52 min for dimethoate and methomyl, respectively. On the other hand, there were no significant changes in the biochemical and histological parameters of rats treated with remediated water when compared to the control group. The treatment of water by zinc oxide nanocatalyst improved the quality of water parameters. Collectively, advanced oxidation processes using ZnO nanocatalyst can be considered as a promising treatment technology for the complete detoxification of methomyl and dimethoate in water. However, further

Title	Study of Optical, Electrical and Photocatalysis Properties of SrMnO3 Synthesized by Solid-State Reaction
Authors	Ahmed, M.R., Ali, H.M., Hasaneen, M.F., Etman, A., Abdel Hakeem, A.M.
Journal	Information Sciences Letters11(2), pp. 457-463
Abstract	SrMnO3 was prepared by solid-state reaction method to obtain powder then thin films by a thermal evaporation method. XRD diffraction, Optical and electrical properties were investigated. Photocatalysis process was implemented as an interesting application of SrMnO3. XRD diffraction results were used to study the compound structure and to calculate some other parameters such as crystallite size, D, microstrain, e, and dislocation density, d. XRD results revealed that SrMnO3 has a polycrystalline structure such as hexagonal structure for SrMnO3 phase and tetragonal structure for MnO2 phase. The optical energy band for the powder and thin film were equal to 2.28 eV and 2.92 eV respectively, which candidates this compound to be a solar cell transparent window, especially for deposited thin films. The electrical resistivity behaved as semiconductor-like where it decreases with the temperature with electrical activation energy equal 0.960 eV when heating and 0.663 eV when cooling. The result of the Methylene blue absorption showed that the SrMnO3 powder does work very well as a Photocatalyst. The efficiency of the powder of SrMnO3 as a Photocatalyst increases with the illumination time and its best value is about 56% at 120 min.

Title	Modeling of a solar-powered thermoelectric air-conditioning system
	using a random vector functional link network integrated with jellyfish
	search algorithm
Authors	Almodfer, R., Zayed, M.E., Elaziz, M.A., (), Mudhsh, M., Elsheikh, A.H.
Journal	Case Studies in Thermal Engineering 31,101797
Abstract	In this study, the performance of a solar thermoelectric air-conditioning system (STEACS) is predicted using advanced optimized artificial intelligence models. A STEACS powered by solar PV panels is experimentally tested under different cooling loads varying from 65.0 to 260 W. The obtained experimental data are used to train and test the model. The model consists of a random vector functional link (RVFL) network optimized by one metaheuristic optimizer such as jellyfish search algorithm (JFSA), artificial ecosystem-based optimization (AEO), manta ray foraging optimization (MRFO), and sine cosine algorithm (SCA). The inputs of the model were time, solar irradiance, ambient temperature, wind speed, and humidity. The predicted responses of the investigated system are the input current of PV, the average temperature of the air-conditioned room, the cooling capacity, and the coefficient of performance. The accuracy of the four models is evaluated using eight statistical measures. RVFL-JFSA outperformed the other models in predicting all responses with a correlation coefficient of 0.948–0.999 and, consequently, it is recommended to use it to model STEACS system.

Title	Growth inhibition and microcystin accumulation in bush bean (Phaseolus vulgaris L.) plant irrigated with water containing toxic Chrooccocus minutus
Authors	Mohamed, Z., Bakr, A., Campos, A., Vasconcelos, V., Nasr, S.AM.
Journal	Agricultural Water Management261,107381
Abstract	Cyanobacterial blooms and microcystins (MCs) in irrigation waters have been recognized as an emergent environmental threat to many terrestrial plants. While several studies addressed the impacts of crude cyanobacterial extracts and dissolved MC-containing water on crop plants, less is known about the effects of irrigation water containing cyanobacterial blooms (i.e., intracellular plus extracellular toxins). In the present study, we investigated the effects of whole culture, cell-free culture filtrate and living cells of the toxic cyanobacterium Chroococcus minutus on growth, physiological parameters and MC accumulation in Phaseolus vulgaris (bush bean) plants. The plants were grown in pots containing agricultural soil, in order to mimic common agricultural practice. After 4 weeks of growth, treated plants exhibited substantial reduction in root and shoot growth, photosynthetic pigments, and protein contents compared to control plants. Treated plants also showed higher lipid peroxidation than control plants. The lowest inhibitory effects were observed in plants treated with culture filtrate containing extracellular MCs only (15.3 μ g L-1). The highest inhibitory effects were recorded in plants treated with whole cyanobacterial culture containing both intra- and extracellular MCs (132 μ g L-1), indicating the release of intracellular MCs from cells into the rizhosphere and their uptake by plant roots. MC concentrations in immature pods of P. vulgaris plants irrigated with whole culture and living cyanobacterial cells led to estimates of daily MCs intake (0.125–0.391 μ g kg-1 body weight) that exceeded the total daily intake guidelines (0.04 μ g kg-1 body weight) for human food consumption. This study suggests that irrigation water as well as plants used in human consumption should be regularly monitored for the presence of MCs and other cyanotoxins.

Title	A review on security threats, vulnerabilities, and counter measures of
	5G enabled Internet-of-Medical-Things
Authors	Hasan, M.K., Ghazal, T.M., Saeed, R.A., (), Abdel-Khalek, S.,
	Alkhassawneh, H.M.
Journal	IET Communications16(5), pp. 421-432
Abstract	The recent advancements of Internet of Things (IoT) embedded systems,
	wireless networks, and biosensors those have assisted in the rapid
	development of implanting wearable sensors are reviewed here. The
	applications of the internet of medical things (IoMT) that has gained
	major attention as an ecosystem of connected clinical systems,
	computing systems, and medical sensors geared towards improving the
	quality of healthcare services are also reviewed here. The 5G based AI
	technology can revolute the perception of healthcare and lifestyle. In
	light of the importance of IoT platforms and 5G networks, the purpose
	of this proposed research work is to identify threats that could undermine the integrity, privacy, and security of IoMT systems. Also,
	the novel blockchain-based approaches that can help in improving the
	confidentiality of IoMT network. It has been discovered that IoMT is
	vulnerable to various types of attacks, including denial of service (DoS),
	malware, and eavesdropping attack. In addition, IoMT is exposed to
	various vulnerabilities, such as security, privacy, and confidentiality.
	Despite multiple security threats, there are novel cryptographic
	techniques, such as access control, identity authentication, and data
	encryption that can help in improving the security and reliability of
	IoMT devices.

Title	The protective role of lycopene against toxic effects induced by the
	herbicide Harness® and its active ingredient acetochlor on the African
	catfish Clarias gariepinus (Burchell, 1822)
Authors	Sayed, A.ED.H., Hamed, M., Soliman, H.A.M., Authman, M.M.N.
Journal	Environmental Science and Pollution Research
	29(10), pp. 14561-14574
Abstract	The effects of Harness® toxicity on fish health are little known. So,
	current work aimed to study the impact of sub-lethal doses of Harness®
	(an acetochlor-based herbicide) on the African catfish, Clarias
	gariepinus, and also investigated the potential role of lycopene (LYCO)
	administration in alleviating Harness® negative effects. Fish were
	divided into five groups in triplicates as follows: group 1 (control)
	received no treatment, group 2 was exposed to 10 µm Harness®/L,
	group 3 was orally administered 10 mg LYCO/kg body weight and
	exposed to 10 µm Harness®/L, group 4 was exposed to 100 µm
	Harness®/L, and group 5 was orally administered 10 mg LYCO/kg
	body weight and exposed to 100 µm Harness®/L for 2 weeks. Some
	hemato-biochemical parameters, genotoxicity, and histopathological
	changes were assessed at the end of this period. Sub-lethal doses of
	Harness® altered the shape of erythrocytes in contrast to the control
	sample. Also, hematological parameters of exposed fish exhibited a
	significant ($P < 0.05$) reduction in the values of red blood cell count
	(RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PL), as well
	as an insignificant $(P > 0.05)$ drop in mean corpuscular volume (MCV).
	Harness® was also found to cause genotoxicity as well as
	histopathological alterations. LYCO administration decreased hemato-
	biochemical changes and returned them to near-normal levels. The
	findings showed that LYCO administration (10 mg LYCO/kg body
	weight) decreased Harness® toxicity in C. gariepinus and alleviated its
	destructive effects.

Title	Rapidly, highly yielded and green synthesis of dihydrotetrazolo[1,5-
The	
	a]pyrimidine derivatives in aqueous media using recoverable Pd (II)
	thiazole catalyst accelerated by ultrasonic: Computational studies
Authors	El-Remaily, M.A.E.A.A., Soliman, A.M.M., Khalifa, M.E., (), El-
	Dabea, T., Abu-Dief, A.M.
Journal	Applied Organometallic Chemistry 36(2),e6320
Abstract	Here, we synthesized new thiazole complexes from Cu (II), Fe (III), and
	Pd (II) ions. Such complexes were characterized to present their
	chemical formulae, firstly. The octahedral geometry was suggested for
	the investigated complexes except Pd (II) complex (ARPTPd), which has
	a square-planer arrangement. ARPTPd was planned to be used as a
	catalyst for synthesis of dihydrotetrazolo[1,5-a]pyrimidine derivatives at
	mild conditions. The catalytic activity of ARPTPd complex in four-
	components reaction approach was deliberately monitored till it reaches
	the most favorable conditions. The advantages of suggested catalyst
	ë ëë .
	were basically summarized by using green solvent (H2O), lower reaction time, and high meduate richda Alas, the superiority of ADDTDd
	time, and high products yields. Also, the superiority of ARPTPd
	complex and ultrasonic irradiation towards synthesis of
	dihydrotetrazolo[1,5-a]pyrimidine derivatives was revealed compared
	with other Lewis acids, basic, and ionic liquid catalysts. Furthermore,
	the mildness of conversion and compatibility with different functional
	groups makes it attractive. In addition, in consecration, computational
	aspects were often taken according to their effect on the declaration or
	discrimination of variable functional characteristics. Crystal packing
	systems of complexes were configured to extract important surface
	properties. DFT study was also applied to explain the causes behind the
	superiorly of ARPTPd complex. Also, the optimization process for
	intermediates was executed to support the suggested mechanism.
	Finally, this simple, economical, and green catalytic procedure may be
	applied to the industry in future.
	upplied to the industry in future.

Title	RecentAdvancesandFuturePerspectivesofMetal-BasedElectrocatalysts for Overall Electrochemical Water Splitting
Authors	Hayat, A., Sohail, M., Ali, H., (), Newair, E.F., Orooji, Y.
Journal	Chemical Record Article in Press
Abstract	Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2-based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced- price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalysts based on existing problems are presented. It is anticipated t

Title	The mitigating effect of Spirulina (Arthrospira platensis) on the hemotoxicity of gibberellic acid on juvenile tilapia (Oreochromis niloticus)
Authors	Sayed, A.ED.H., Hamed, M., El-Sayed, A.A.A., Nunes, B., Soliman, H.A.M.
Journal	Environmental Science and Pollution Research
Abstract	The use of plant growth regulators has led to environmental contamination of water bodies that occur adjacent to agricultural areas. Some of these chemicals are bioactive, not only to plants, but also to non-target exposed biota, namely of the aquatic compartment. Previous work demonstrated the establishment of hepato- and nephrotoxic effects in juvenile tilapia (Oreochromis niloticus) exposed via aquatic media to gibberellic acid (GA3), which is among the most used plant growth regulators, in agricultural practices. Here, we investigated the effect of GA3 on hematological indices, poikilocytosis, nuclear abnormalities, and genotoxic indices measured in Nile tilapia (Oreochromis niloticus), as well as the putative protective effects of dietary supplementation of Spirulina (Arthrospira platensis). Fish were evenly assorted into 5 groups: group I served as a control, and groups II–V were fed diets supplemented with Spirulina at rates of 0 g/kg, 5 g/kg, 20 g/kg, and 100 g/kg, respectively, for 2 months before being exposed to 150 mg/L GA3. The results revealed that GA3 exposure decreased significantly all hematological indices (P < 0.05), except leucocytes and mean corpuscular hemoglobin concentration (MCHC), compared to the control group (P > 0.05). GA3 exposure increased significantly the percentage of nuclear abnormalities, altered erythrocytes and the percentages of tail DNA, compared to the control group (P < 0.05). Spirulina supplementation restored the hematological, poikilocytosis, nuclear abnormalities, and the percentages of tail DNA to near normal levels. The 100 g/kg SP treatment was the most effective in attaining such effect, showing concentration-dependency. The present study reinforces our findings of the toxicity of GA3 on O. niloticus and suggests that the addition of Spirulina to fish diet can mitigate the hemotoxic effects of GA3.

Title	Protective efficacy of dietary natural antioxidants on microplastic particles-induced histopathological lesions in African catfish (Clarias gariepinus)
Authors	Sayed, A.ED.H., Hana, M.N., Hamed, M., (), Lee, JS., Soliman, H.A.M.
Journal	Environmental Science and Pollution Research
Abstract	Microplastic particles (MPs) are a common environmental pollutant easily ingested by fish in aquaculture. The current study evaluated the protective efficacies of some antioxidant, e.g., lycopene, citric acid, and chlorella, against the toxic effects of MP ingestion by Clarias gariepinus using histopathological biomarkers. Five experimental groups were established, a control group receiving only a standard diet, a group exposed to 500 mg/kg MP concomitant with the standard diet, and three antioxidant groups exposed to MPs plus either lycopene (500 mg/kg), citric acid (30 g/kg), or chlorella (50 g/kg) in the standard diet. After 15 days, fish were sacrificed for histological and histochemical examinations. Histological analysis of the kidney for group 2 (fed 500 mg/kg MPs alone) revealed distributed tissue dissociation, regional glomerular hypertrophy or shrinkage, melanomacrophage accumulation, and expansion of Bowman's space, while liver tissue exhibited dilation and rupture of the central vein wall, hemorrhage, cytoplasmic vacuolation, and cellular necrosis or apoptosis. Fish exposed to MPs also exhibited connective tissue fiber accumulation around renal blood vessels, renal tubules, the central hepatic vein, hepatic blood sinusoids, and serosal, muscle, and submucosal layers of the intestine. In addition, MP exposure reduced carbohydrate (mainly glycogen) contents in the brush borders and basement membranes of renal tubules, glomeruli, and intestinal tissues as well as in the cytoplasm of hepatocytes. These signs of renal, hepatic, and intestinal histopathology were fully or partially reversed by dietary lycopene, chlorella, or citric acid. Enhancing dietary antioxidants is an effective strategy for preventing MP toxicity in Clarias gariepinus in aquaculture.

	Flood vulnerability mapping and urban sprawl suitability using FR, LR, and SVM models
Authors	Youssef, A.M., Pourghasemi, H.R., Mahdi, A.M., Matar, S.S.
Journal	Environmental Science and Pollution Research
Abstract	Environmental Science and Pollution Research Floods are among the most destructive disasters because they cause immense damage to human life, property (land and buildings), and resources. They also slow down a country's economy. Due to the dynamic and complex nature of floods, it is difficult to predict the areas that are prone to flooding. In this study, an attempt was made to create a suitability map for future urban development based on flood vulnerability maps for the catchment area of Taif, Saudi Arabia. Three models were used for this purpose, including bivariate (FR), multivariate (LR), and machine learning (SVM) were used. Thirteen parameters were used as flood-contributing parameters. The inventory map was constructed using field surveys, historical data, analysis of RADAR (Sentinel-1A), and Google Earth imagery collected between 2013 and 2020. In general, 70% flood locations were randomly selected from the flood inventory map to generate the flood susceptibility model, and the remaining 30% of the flood locations were used for model validation. The flood susceptibility map was classified into five zones: very low, low, moderate, high, and very high. The AUC value used to predict the performance of the models showed that the accuracy reached 89.5, 92.0, and 96.2% for the models FR, LR, and SVM, respectively. Accordingly, the flood susceptibility map produced by the SVM model is accurate and was used to produce a flood vulnerability map with the help of urban and road density maps. Then slope and elevation maps were integrated with the flood vulnerability model to produce the final suitability map, which was classified into three zones: isolated zone, low suitability, and high suitability areas. The results showed that the highly suitable areas are located in the east and northeast of the Taif Basin, where the flood risk is low and very low. The results of this work will improve the land use planning of engineers and authorities and take possible measures to reduce the flood hazards

Title	Engineered magnetic nanoparticles for environmental remediation (
	Book Chapter)
Authors	Abdelraheem, W.H.M., Sayed, M., Abu-Dief, A.M.
Journal	Fundamentals and Industrial Applications of Magnetic Nanoparticles pp. 499-524
Abstract	Recently, there has been an increasing application of engineered magnetic nanoparticles (MNPs) for environmental remediation, especially in water treatment, to secure the public health against the environmental/waterborne diseases. To this context, it is necessary to understand the structure-related mechanisms by which these MNPs interact with various contaminants in the environment during applications. The current chapter provides a holistic overview of current knowledge of using various MNPs in environmental applications, with the emphasis on zero-valent iron, magnetite (Fe3O4), and maghemite (γ -Fe2O3) nanoparticles as the most common and efficient MNPs used. The different accompanying phenomena such aggregation of nanosized MNPs as well as methods for stabilization are presented. Other approaches to improve the catalytic performance of MNPs by functionalizing the surface with active chelating agents are also discussed. Moreover, the removal of heavy metals, radionuclides, pharmaceuticals, and personal care products, per- and polyfluoroalkyl substances, pesticides, dyes, disinfection by-products, and industrial chemicals by MNPs have been thoroughly discussed. This chapter provides an insight into the successful application of MNPs toward sustainable environmental remediations.

Title	Synthesis and potential applications of cyclodextrin-based metal– organic frameworks: a review
Authors	Xu, Y., Rashwan, A.K., Osman, A.I., (), Chen, W., Rooney, D.W.
Journal	Environmental Chemistry Letters Article in Press
Abstract	Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal-organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal-organic framework crystals with particle sizes ranging from 200 nm to 400 µm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal-organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.

Title	Physicochemical, in vitro therapeutic activity, DNA-binding, and in
	silico molecular docking studies of samarium(III) complexes bearing
	N,O-chelated Schiff base ligands
Authors	Abdel Rahman, L.H., Al-Zaqri, N., Abdelghani, A.A., Abdalla, E.M.
Journal	Journal of Coordination Chemistry Article in Press
Abstract	Two new Sm(III) complexes, [Sm(L1)2Cl(H2O)]·3H2O and
	[Sm(L2)2Cl(H2O)]·2H2O, where HL1 is (E)-4-bromo-2-(((4-(2-
	hydroxyethyl)phenyl)imino)methyl)phenol and HL2 is (E)-2-(((4-(2-
	hydroxyethyl)phenyl)imino)methyl)-4-methoxyphenol, are reported.
	From the spectral data, it was deduced that the two Schiff base ligands
	existed as monobasic bidentate ON bonded to samarium(III) through
	deprotonated hydroxyl oxygen and azomethine nitrogen adopting an
	octahedral environment around Sm(III). The optimized structures,
	molecular electrostatic potential, and the energies HOMO and LUMO
	were calculated using DFT/B3LYP calculations employing the Gaussian
	09 program. The antimicrobial efficacy of complexes and their parent
	ligands have been tested in vitro against various strains of bacteria and
	fungus. The antimicrobial activity of the new complexes has been
	enhanced compared to their parent free ligands. MTT assay was used to
	assess the in vitro cytotoxicity of the ligands and their Sm(III) complexes
	against the human breast cancer cell line (MCF-7) and human liver
	carcinoma cell line (Hep-G2). The CT-DNA binding constants of the
	interaction have been calculated and follow the order SmL1 > SmL2.
L	

Title	Statistical Analysis with Dingo Optimizer Enabled Routing for Wireless
	Sensor Networks
Authors	Alghamdi, A.S., Alharbi, R., Alsuhibany, S.A., Abdel-Khalek, S.
Journal	Computers, Materials and Continua 73(2), pp. 2865-2878
Abstract	Security is a vital parameter to conserve energy in wireless sensor networks (WSN). Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission. But the available routing techniques do not involve security in the design of routing techniques. This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme (SADO-RRS) for WSN. The proposed SADO- RRS technique aims to detect the existence of attacks and optimal routes in WSN. In addition, the presented SADO-RRS technique derives a new statistics based linear discriminant analysis (LDA) for attack detection, Moreover, a trust based dingo optimizer (TBDO) algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN. Besides, the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN. For demonstrating the enhanced outcomes of the SADO-RRS technique, a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS
	technique.

Title	Geochemical and mineralogical characteristics of some gold mine tailings in the Eastern Desert of Egypt
Authors	Redwan, M.
Journal	Frontiers of Earth Science Article in Press
Abstract	Tronuers of Earth Science Article in Press The adverse environmental effects of mine tailings disposal on the surrounding ecosystems are worldwide environmental problems. Due to environmental issues related to tailings discharged on land surface, detailed tailings characterization is a prerequisite for a long-term management solution. The tailings from four gold mines in Egypt, namely Fatira, El Sid, Barramiya, and Atud were investigated for their geochemical-mineralogical features and the effect of weathering behavior on the release of their heavy elements. The tailings samples were investigated by mineralogical (XRD and ESEM-EDS), physical (grain-size distribution) and geochemical (XRF) techniques. Most of the tailings have uniform silt-size with fine to very finesand and clay. Atud tailings have coarse to fine sands. High carbonate, predominantly calcite was found for the samples from Fatira and Atud, calcite-ankerite from El Sid and dolomite from Barramiya with little sulfide-content. High- mean of Cr (569287 mg/kg), Ni (89191 mg/kg) and Co (4221 mg/kg) values are coinciding with the ultramafic nature in Atud and Barramiya tailings. El Sid tailings have a high-mean concentration of Zn (1357 mg/kg) and Pb (1349 mg/kg). Barramiya tailings have a high-mean As concentration (2635 mg/kg). The Fatira tailings are characterized by high-mean values of Sr (444 mg/kg) and Cu (280 mg/kg) arising from auriferous mineralization. High Sr concentrations in Fatira tailings are mainly due to its adsorption to iron oxides. Pyrite oxidation is conceded along the cracks and/or the edges of the crystals in the El Sid, Barramiya and Atud tailings. The Threshold Effect Level (TEL) values indicated high contamination from heavy elements to the neighboring ecosystem. The tailings were deposited downstream into the small wadis. Wind and water erosion can dissolve efflorescent materials enriched in toxic elements like As, Zn, and Pb at tailings surface. The release of contaminants could be catastrophic for the environment without min

Title	Task Scheduling Optimization in Cloud Computing by Rao Algorithm
Authors	Younes, A., Elnahary, M.Kh., Alkinani, M.H., El-Sayed, H.H.
Journal	Computers, Materials and Continua72(3), pp. 4339-4356
Abstract	Cloud computing is currently dominated within the space of high- performance distributed computing and it provides resource polling and on-demand services through the web. So, task scheduling problem becomes a very important analysis space within the field of a cloud computing environment as a result of user's services demand modification dynamically. The main purpose of task scheduling is to assign tasks to available processors to produce minimum schedule length without violating precedence restrictions. In heterogeneous multiprocessor systems, task assignments and schedules have a significant impact on system operation. Within the heuristic-based task scheduling algorithm, the different processes will lead to a different task execution time (makespan) on a heterogeneous computing system. Thus, a good scheduling algorithm should be able to set precedence efficiently for every subtask depending on the resources required to reduce (makespan). In this paper, we propose a new efficient task scheduling algorithm in cloud computing systems based on RAO algorithm to solve an important task and schedule a heterogeneous multiple processing problem. The basic idea of this process is to exploit the advantages of heuristic-based algorithms to reduce space search and time to get the best solution. We evaluate our algorithm's performance by applying it to three examples with a different number of tasks and processors. The experimental results show that the proposed approach significantly succeeded in finding the optimal solutions than others in terms of the time of task implementation.

Title	Machine learning techniques in internet of UAVs for smart cities
	applications
Authors	Alqurashi, F.A., Alsolami, F., Abdel-Khalek, S., Sayed Ali, E., Saeed,
	R.A.
Journal	Journal of Intelligent and Fuzzy Systems
	42(4), pp. 3203-3226
Abstract	Recently, there were much interest in technology which has emerged
	greatly to the development of smart unmanned systems. Internet of
	UAV (IoUAV) enables an unmanned aerial vehicle (UAV) to connect
	with public network, and cooperate with the neighboring environment.
	It also enables UAV to argument information and gather data about
	others UAV and infrastructures. Applications related to smart UAV and
	IoUAV systems are facing many impairments issues. The challenges are
	related to UAV cloud network, big data processing, energy efficiency in
	IoUAV, and efficient communication between a large amount of
	different UAV types, in addition to optimum decisions for intelligence.
	Artificial Intelligence (AI) technologies such as Machine Learning (ML)
	mechanisms enable to archives intelligent behavior for unmanned
	systems. Moreover, it provides a smart solution to enhance IoUAV
	network efficiency. Decisions in data processing are considered one of
	the most problematic issues related to UAV especially for the operations
	related to cloud and fog based network levels. ML enables to resolve
	some of these issues and optimize the Quality of UAV network
	experience (QoE). The paper provides theoretical fundamentals for ML
	models and algorithms for IoUAV applications and recently related
	works, in addition to future trends.
L	

Title	Modelling and Digital Mapping of the Infiltration Characteristics of
	Major Agricultural Soils
Authors	Mustafa, AR.A., Ali, G.A.M., Hamed, M.H.
Journal	International Journal of Thin Film Science and Technology
	11(1), pp. 133-141
Abstract	A study was attempted to assess the infiltration characteristics of major
	soils of Sohag governorate, Egypt. Twelve soil profiles were exposed and
	morphologically examined to represent the soils of the study area.
	Horizon-wise soil samples were taken and analyzed for physical and
	chemical properties. The infiltration field measurements were made for
	five hours using a double-ring infiltrometer, and the empirical
	Kostiakov's infiltration model was applied. The results indicated that
	the soils were classified as Aridisols, Entisols, and Vertisols. Initial
	infiltration rates ranged between 0.80 and 6.67 m/day. The highest
	values (6.47 and 6.67 m/day) were observed in locations No. 11 and 12,
	where the coarse texture prevailed. The fine texture soils recorded the
	lowest values (0.80, 0.81, and 0.82 m/day) in locations No. 8, 4, and 7,
	respectively. Infiltration rate is classified as very rapid, rapid,
	moderately rapid, and moderate. A correlation was found between
	steady infiltration rates and sand, hydraulic conductivity, CaCO3 content, and organic carbon in order r=0.95, 0.93, 0.74, and 0.79.
	However, were found to be negatively correlated with the infiltration
	rates (r=-0.80,-0.91,-0.95,-0.97,-0.64,-0.91, respectively. Whereas bulk
	density showed an insignificant relationship (p=0.05) with infiltration
	rates in the order of r=0.13. GIS environment was used to generate
	different maps of soil parameters, and finally, the infiltration map was
	produced for the study area.

كلية العلوم جامعة سو هاج

Title	Slope Instability Mechanisms in Karst Rocks and Their Impact on Sustainable Development, Egypt
Authors	El-Haddad, B.A., Youssef, A.M., El-Shater, AH., El-Khashab, M.H.
Journal	Advances in Science, Technology and Innovation pp. 3-6
Abstract	Recently, Egypt has faced unprecedented development with rapid urban and infrastructure expansion. Vast areas of Egypt are underlain by karst rocks (carbonate and evaporite). Highways and roads constructed along these karst areas are susceptible to slope stability problems. In this work, remote sensing imagery, field investigation, and laboratory studies are applied to analyze and identify unstable areas and their characteristics. Five slope instability mechanisms are categorized including collapses of weak materials from filled cavities, breakdown of cavities, instability due to differential erosions, dissolution along discontinuities, and sliding along weak surfaces. This study could help to understand the causes of slope instability problems, to maintain the sustainability of the infrastructure, and to design appropriate prevention and remediation measures to avoid future problems.

67

Title	Encryption with Image Steganography Based Data Hiding Technique in
	IIoT Environment
Authors	Ragab, M., Alshehri, S., Alhadrami, H.A., (), Ashary, E.B., Abdel-
	Khalek, S.
Journal	Computers, Materials and Continua
	72(1), pp. 1223-1338
Abstract	Rapid advancements of the Industrial Internet of Things (IIoT) and
	artificial intelligence (AI) pose serious security issues by revealing secret
	data. Therefore, security data becomes a crucial issue in HoT
	communication where secrecy needs to be guaranteed in real time.
	Practically, AI techniques can be utilized to design image
	steganographic techniques in IIoT. In addition, encryption techniques
	act as an important role to save the actual information generated from
	the HoT devices to avoid unauthorized access. In order to accomplish
	secure data transmission in IIoT environment, this study presents novel
	encryption with image steganography based data hiding technique
	(EISDHT) for IIoT environment. The proposed EIS-DHT technique
	involves a new quantum black widow optimization (QBWO) to competently choose the pixel values for hiding secrete data in the cover
	image. In addition, the multi-level discrete wavelet transform (DWT)
	based transformation process takes place. Besides, the secret image is
	divided into three R, G, and B bands which are then individually
	encrypted using Blowfish, Twofish, and Lorenz Hyperchaotic System.
	At last, the stego image gets generated by placing the encrypted images
	into the optimum pixel locations of the cover image. In order to validate
	the enhanced data hiding performance of the EIS-DHT technique, a set
	of simulation analyses take place and the results are inspected interms
	of different measures. The experimental outcomes stated the supremacy
	of the EIS-DHT technique over the other existing techniques and ensure
	maximum security.

Title	MHD convective non-Darcy flow of a nanofluid through a porous
	stretching sheet with thermal buoyancy and chemical reaction
Authors	Abdelhafez, M.A., Abd-Alla, A.M., Abo-Dahab, S.M.
Journal	Waves in Random and Complex Media Article in Press
Abstract	In this article, magnetohydrodynamic (MHD) the two-dimensional
	stagnation-point convection flow over a nanofluid through a porous
	medium due to a solar energy stretching sheet is investigated
	theoretically. Heat transfer subject to thermal radiation, viscous
	dissipation, an applied magnetic field, thermal buoyancy, and convective
	boundary conditions is considered. The governing boundary layer
	equations are reduced into ordinary differential equations by a
	similarity transformation. The transformed equations are solved
	numerically by using an efficient numerical shooting technique with a
	fourth-fifth order Runge-Kutta method scheme. The effects of the
	external parameters as jets flow, thermal convective, and mass
	convective on the flow field and heat transfer characteristics were
	obtained and discussed. Finally, the results obtained agree with the
	practical results and applicable in the related fields, especially,
	medicine, biochemistry, pharmacology,, etc.

Title	Regression models to estimate accumulation capability of six metals by two macrophytes, typha domingensis and typha elephantina, grown in an arid climate in the mountainous region of taif, Saudi Arabia
Authors	Al-Sodany, Y.M., Saleh, M.A., Arshad, M., (), Al-Bakre, D.A., Eid, E.M.
Journal	Sustainability (Switzerland14(1),1
Abstract	In this study, we explored the capacity for two promising macrophytes, Typha domingensis and Typha elephantina, to be used for the surveillance of contamination by six metals, i.e., Cu, Fe, Mn, Ni, Pb, and Zn, in the mountainous area of Taif City in Saudi Arabia. Regression models were generated in order to forecast the metal concentrations within the plants' organs, i.e., the leaves, flowers, peduncles, rhizomes, and roots. The sediment mean values for pH and the six metals varied amongst the sampling locations for the respective macrophytes, indicating that similar life forms fail to indicate equivalent concentrations. For instance, dissimilar concentrations of the metals under investigation were observed within the organs of the two rooted macrophytes. The research demonstrated that the segregation of metals is a regular event in all the investigated species in which the metal concentrations vary amongst the different plant constituent types. In the current study, T. domingensis and T. elephantina varied in their capacity to absorb specific metals; the bioaccumulation of metals was greater within T. domingensis. The relationships between the observed and model-estimated metal levels, in combination with high R2 and modest mean averaged errors, offered an appraisal of the goodness of fit of most of the generated models. The t-tests revealed no variations between the observed and model-estimated concentrations of the six metals under investigation within the organs of the two macrophytes, which emphasised the precision of the models. These models offer the ability to perform hazard appraisals within ecosystems and to determine the reference criteria for sediment metal concentration. Lastly, T. domingensis and T. elephantina exhibit the potential for bioaccumulation for the alleviation of contamination from metals.

Title	Synthesis and characterization of undoped and copper-doped zinc oxide
	nanowires for optoelectronic and solar cells applications
Authors	Hadia, N.M.A., Aljudai, M., Alzaid, M., Mohamed, S.H., Mohamed,
	W.S.
Journal	Applied Physics A: Materials Science and Processing
	128(1),17
Abstract	This work concentrated on the synthesis of undoped and Cu-doped ZnO
	nanowires (NWs) by vapor transport method as well as on their physical
	and chemical characterizations. All X-ray diffraction patterns were
	indexed to ZnO single phase of hexagonal structure, and no Cu or Cu
	compounds characteristic peaks were observed. The evaluated Cu at.%
	was proportional with Cu ratios used in the source alloys. NWs
	morphology with quite long and smooth surfaces was observed for
	undoped sample, whereas NWs with agglomerations of particles were
	observed for higher Cu-doped samples. The overall transmittance
	decreased with increasing Cu doping ratio with a red shift for the onset
	of absorption. The optical energy gap was decreased from 3.33 to 3.10
	eV upon increasing the Cu ratio from 0 to 5 at.%. Two emission bands
	were observed in the photoluminescent spectra at 385 and 545 nm, and
	they were strongly tailored via Cu doping. All the samples exhibited
	semiconducting behavior with two activation energies. The sensitivity to
	the NO2 gas was increased with Cu doping ratio. The magnetization
	measurements revealed ferromagnetic behavior for all the NWs samples
	at room temperature.

كلية العلوم جامعة سو هاج

Title	Colorimetric detection of Hg2+ ion using fluorescein/thiourea sensor as
	a receptor in aqueous medium
Authors	Bakir, E.M., Sayed, A.R., El-Lateef, H.M.A.
Journal	Journal of Photochemistry and Photobiology A: Chemistry
	422,113569
Abstract	A simple and selective colorimetric method was used for detection of
	mercury ions (Hg2+) in the aqueous medium and environmental water
	sample. Fluorescein-thiourea (FLTU) conjugate complex as receptor
	was prepared by 1:1 M ratio of 10 µmol L-1 fluorescein dye and
	thiourea in phosphate buffer solution at pH 7.00. The IR spectra of
	FLTU receptor have illustrated the formation of H-bond between
	thiourea and fluorescein dye. The receptor fluorescein-thiourea (FLTU)
	was used as a chemo-sensor highly selectively to detect the Hg2+ ion by
	changing the receptor color from a yellow color to red through the
	quenching of fluorescence intensity of the receptor. The lower detection
	limit (LOD) and quantitation limit (LOQ) of Hg2+ ions with the
	receptor FLTU are 0.24 and 0.73 nmol L–1 (correlation coefficient R2 =
	0.985) as determined through the absorption spectroscopic method,
	respectively. The mercury ions are promising and could be achieved via
	the formation of the complex in a 1:1 stoichiometric ratio of receptor to
	Hg2+ ions.

72

Title	Simultaneous biodegradation of harmful Cylindrospermopsis
	raciborskii and cylindrospermopsin toxin in batch culture by single
	Bacillus strain
Authors	Mohamed, Z., Alamri, S., Hashem, M.
Journal	Environmental Science and Pollution Research
	29(4), pp. 5153-5161
Abstract	This study investigates the capability of a Bacillus flexus strain isolated from decayed cyanobacterial blooms for the bioremediation of Cylindrospermopsis raciborskii and cylindrospermopsin (CYN) toxin. The algicidal activity of this strain was tested by co-cultivation with C. raciborskii cultures. CYN biodegradation was investigated in the presence of living and heat-inactivated bacterial cells or bacterial filtrate. Living bacterial cells inhibited C. raciborskii growth after 2 days of incubation with complete cell death at day 5. Bacterial filtrate caused a rapid reduction in C. raciborskii growth at the first day, with complete cell lysis at day 3. Only living cells of SSZ01 caused reduction in CYN released into the medium during the bacterial decay of C. raciborskii cells. The biodegradation rate of CYN by SSZ01 relied on initial toxin concentrations. The highest rate (42 μ g CYN L-1 day-1) was obtained at the higher initial concentration (300 μ g L-1), and the lowest (4 μ g CYN L-1 day-1) was at lower concentration (50 μ g L-1). These results suggest that this bacterial strain could be employed to bioremediate cyanobacterial blooms in freshwaters. Also, the application of this bacterium in slow sand filters would give possibilities for degradation and bioremediation of cyanotoxins in drinking water treatment plants. Graphical abstract: [Figure not available: see
	drinking water treatment plants. Graphical abstract: [Figure not available: see fulltext.].

Title	Engineered Nanoparticles, Natural Nanoclay and Biochar, as Carriers
	of Plant-Growth Promoting Bacteria
Authors	Pavlicevic, M., Abdelraheem, W., Zuverza-Mena, N., (), Marmiroli,
	N., White, J.C.
Journal	Nanomaterials
	12(24),4474
Abstract	The potential of biochar and nanoparticles to serve as effective delivery
	agents for beneficial bacteria to crops was investigated. Application of
	nanoparticles and biochar as carriers for beneficial bacteria improved
	not only the amount of nitrogen-fixing and phosphorus-solubilizing
	bacteria in soil, but also improved chlorophyll content (1.2-1.3 times),
	cell viability (1.1–1.5 times), and antioxidative properties (1.1–1.4 times)
	compared to control plants. Treatments also improved content of
	phosphorus (P) (1.1–1.6 times) and nitrogen (N) (1.1–1.4 times higher)
	in both tomato and watermelon plants. However, the effect of biochars
	and nanoparticles were species-specific. For example, chitosan-coated
	mesoporous silica nanoparticles with adsorbed bacteria increased the
	phosphorus content in tomato by 1.2 times compared to a 1.1-fold
	increase when nanoclay with adsorbed bacteria was applied. In
	watermelon, the situation was reversed: 1.1-fold increase in the case of
	chitosan-coated mesoporous silica nanoparticles and 1.2 times in case of
	nanoclay with adsorbed bacteria. Our findings demonstrate that use of
	nanoparticles and biochar as carriers for beneficial bacteria
	significantly improved plant growth and health. These findings are
	useful for design and synthesis of novel and sustainable biofertilizer
	formulations.

Title	Possible Factors Driving Groundwater Quality and Its Vulnerability to
	Land Use, Floods, and Droughts Using Hydrochemical Analysis and GIS Approaches
Authors	El-Magd, S.A.A., Ahmed, H., Pham, Q.B., (), Elkhrachy, I., Masoud, A.M.
Journal	(Water (Switzerland 14(24),4073
Abstract	Land use and climate change always induce significant changes in various parameters of the hydrologic cycle (e.g., surface runoff, infiltration, evapotranspiration). The Wadi El-Assiuti downstream area in the Eastern Desert of Egypt is one of the most promising areas for development that is suffering from insufficient water availability and inadequate water quality for different purposes. The main goal of this research is to evaluate the changes in groundwater quality, land use, and climate in association with geology and flooding during three periods within the years 1997–2019 in the downstream portion of Wadi El-Assiuti in the Eastern Desert of Egypt, using spatiotemporal variation associated with groundwater hydrochemical analysis and GIS techniques. About 133 groundwater samples were collected to examine groundwater quality changes over time. Different groundwater quality indices were calculated, and the results show that TDS levels of groundwater in the study area ranged between 1080–2780 mg/L, 672– 4564 mg/L, and 811–6084 mg/L, while SAR levels varied within 6.15– 15.34, 1.83–28.87, and 1.43–30.57 for the years 1997, 2007, and 2019, respectively. Both RSBC and SSP values exhibited significantly increasing trends over time. KR values were within 1.36–4.06 in 1997, 0.58–14.09 in 2007, and 0.35–14.92 in 2019; MAR values were within 6.9–45.2 in 1997, 20.79–71.5 in 2007, and 17.71–75.81 in 2019; and PI values were within 60.16–83 in 1997, 45.56–101.03 in 2007, and 42.51– 148.88 in 2019. Across the entire study area, ongoing land use changes increased from 1.1% in 1997 to 4.1% in 2019. Findings pointed to the significant contribution of the deep Nubian Sandstone Aquifer to the groundwater aquifer at Wadi El-Assiuti through fractures and deep faults. Given the climatic conditions from 1997–2019, these changes may have affected water quality in shallow aquifers, especially with increasing evaporation. Realizing the spatiotemporal variation of the aquifer recharge system, land use development, and climate change c

Title	Correction to: Heavy metal pollution in Manzala Lake sediments, Egypt: sources, variability, and assessment (Environmental Monitoring and Assessment, (2022), 194, 6, (436), 10.1007/s10661-022-10081-0)
Authors	Redwan, M., Elhaddad, E.
Journal	Environmental Monitoring and Assessment 194(7),461
Abstract	Upon publication of the original article, it was noticed that in the HTML version, the winter and summer symbols of Figs. 2 and 3 were the wrong way round. The corrected Figs. 2 and 3 are shown in the next page. (Figure presented.) (Figure presented.).

Title	Heavy metal pollution in Manzala Lake sediments, Egypt: sources,
	variability, and assessment
Authors	Redwan, M., Elhaddad, E.
Journal	Environmental Monitoring and Assessment 194(6),436
Abstract	The environmental pollution of lake systems due to anthropogenic factors is of growing concern worldwide. Manzala Lake is the largest northern coastal-deltaic lakes of Egypt and has socioeconomic impacts. In this study, the concentrations and origins of seven heavy metals (HMs) and the organic content in the Manzala Lake sediments were explored during the winter and summer. The concentration of the HMs and the organic content were quantified using inductively coupled plasma and loss-on-ignition techniques. Pearson's correlation coefficient (PCC) and principal component analysis (PCA) were applied to evaluate the sources of the metals in the sediments. The HMs and organic matter were enriched during the winter season. The average concentrations of the HMs in the sediments conformed to the following sequence: Fe (14.13) > Mn (0.8) > Cu (0.11) > Zn (0.11) > Ni (0.06) > Pb (0.5) > Cd (0.002) (mg/kg). Sediment quality protocols showed that Mn, Cd, Cu, and Ni pose a significant threat to the aquatic environment in Manzala Lake. The geoaccumulation index (Igeo) values indicated pollution of the sediments with most metals, excluding Fe and Ni. The periodic mean Igeo pollution level followed the sequence Cd > Cu > Zn > Mn > Pb > Ni > Fe. The greatest pollution load index noted during the winter season was principally induced by Cd and Cu. The overall ecological risk index was moderate, with Cd being the most prominent HM. PCA combined with PCC showed that the HM enrichments in the southern (Bahr Al-Baqar Drain [S1], Bashteer [S3], Legan [S5], and Al-Ginka [S4]) and the extreme northern parts (Al-Boghaz [S2], Al-Ginka [S4], Al-Hamra [S7], and Al-Kowar [S9]) were due to their isolation from urban areas compared with the other localities. Extensive waste disposal was responsible for the HM pollution in the Manzala Lake sediments. Advanced treatment technologies and monitoring of the pollution in the water and sediments of Manzala Lake are required to decrease the accumulation of the heavy metals.

Title	Heavy metals distribution in the body parts of the cephalopods (Sepia officinalis and Octopus vulgaris) collected from the Mediterranean Sea, Egypt
Authors	Ahmed, H.O., Moustafa, A.Y., Abd El-Wakeil, K.F., Omer, M.Y.
Journal	Egyptian Journal of Aquatic Biology and Fisheries26(2), pp. 339-349
Abstract	The present study aimed to evaluate the level of some heavy metals in two edible cephalopods; Sepia officinalis and Octopus vulgaris and investigate the distribution and accumulation of these metals in different body parts of cephalopods. The concentrations of seven essential and nonessential heavy metals (Mn, Fe, Cu, Ni, Pb, Zn, and Cd) were measured in the body parts (Head, Arms, Mantles, Digestive gland, Ink, and Viscera) of the investigated cephalopods which collected from three sites at Alexandria city from the Mediterranean Sea-Egypt during March 2017. The digestive gland of both species exhibited a similar pattern of some heavy-metal accumulation where it was the major part of the highest concentrations of Cu, Zn, and Cd. The highest concentration of Mn was found in the viscera of both studied species while the highest concentration of Fe was recorded in the viscera of the Sepia and the digestive gland of the octopus. The metal pollution index (MPI) in Octopus (5.95) was slightly higher than recorded in Sepia (4.38). The lowest value of MPI was found in the head and the mantle of sepia while for the octopus the lowest value of MPI was found in their arms and mantle.

