

Research Group 4

Group Name	Functional Analysis	
Academic Year	2021	

Basic Information		
Department Mathematics		
Location Sohag Univesity		

Group Members						
No. of Prof.	No. of Prof. No. of Ass. Prof. No. of Lect. No. of Ass. Lect. & Demonst.					
-	-	2	1			

	,					Staff	mem	bers	
#	Name		Scier deg		e-	mail	S	pecializations	C.V
1	Mohammed Elmursi		lectu	ırer		@acience.so edu.eg	Fı	unctional Analysis	https://scholar.google.com/citations?hl=en&user =tqo1VLQAAAAJ&view_op=list_works&alert_pre view_top_rm=2&sortby=pubdate
2	Hasanen A. Hammad		lectu	ırer	edu.eg	ience.sohag.		unctional Analysis	https://www.scopus.com/authid/detail.uri?origi n=resultslist&authorId=57191572516&zone=
		ı		_		Ass. Lecturers	<u>s & D</u>	emonstrators	
#	Name	_	ientific egree	е	-mail	nail Specializatio			
3	Ahmed Nafea	Teac Assis	•	a.nafea ohag.e	@science.s du.eg	Functional Analysis		https://www.researchgate.net/profile/Ahmed-Nafea-4/research	

	Theses produced by the Lab					
		M. Sc Thesis				
#	Name	Title	Approval date			
1						
2						
	Ph.D. Thesis					
#						
1	Hasanen A. Hammad	A Study of Random Common Fixed Point Theorems for Random Operators in Various Spaces and Its Applications	3-2018			
2						

	Articles produced by the Lab					
#	Title	Journal information				
1	alpha-isometries on metric and normed linear spaces	International conference on Mathematics and Statistics (ICOMAS 2018)				
2	Some results related to Bessel's inequality in inner product spaces	Journal of Mathematical Inequalities 13 (1), 205- 214				
3	Analytical solution for a periodic boundary random-value problem via stochastic fixed points with PPF dependence technique	Statistics, Optimization and Information Computing, 2019, 7(4), pp. 653–668				
4	A modified shrinking projection methods for numerical reckoning fixed points of G- nonexpansive mappings in hilbert spaces with graph	Miskolc Mathematical Notes, 2019, 20(2), pp. 941–956				
5	Common fixed point results for weakly compatible mappings under implicit relations in complex valued g-metric spaces	Information Sciences Letters, 2019, 8(3), pp. 111–119				
6	PPF-dependent fixed point results for new multi- valued generalized F-contraction in the Razumikhin class with an application	Mathematics, 2019, 7(1), 52				
7	Generalized contractive mappings and related results in b-metric like spaces with an application	Symmetry, 2019, 11(5), 667				
8	A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations	Mathematics, 2019, 7(7), 634				
9	Analytical solution of Urysohn integral equations by fixed point technique in complex valued metric spaces	Mathematics, 2019, 7(9), 852				
10	A solution of fredholm integral equation by using the cyclicnqs-rational contractive mappings technique in b-metric-like spaces	Symmetry, 2019, 11(9), 1184				
11	Fixed-point results for a generalized almost (s, q)- Jaggi F-contraction-type on b-metric-like spaces	Mathematics, 2020, 8(1), 63				
12	A technique of tripled coincidence points for solving a system of nonlinear integral equations in	Journal of Inequalities and Applications, 2020, 2020(1), 211				

	POCML spaces	
13	The laminar boundary layer over a rotating paraboloid	Information Sciences Letters, 2020, 9(3), pp. 199–204
14	Shrinking Projection Methods for Accelerating Relaxed Inertial Tseng-Type Algorithm with Applications	Mathematical Problems in Engineering, 2020, 2020, 7487383
15	Solving a stochastic nonlinear integral equation via random fixed point technique in ordinary metric spaces	Mathematics in Engineering, Science and Aerospace, 2020, 11(4), pp. 889–901
16	Weak and strong convergence results for the modified noor iteration of three quasi-nonexpansive multivalued mappings in hilbert spaces	Filomat, 2020, 34(8), pp. 2495–2510
17	Solution of Nonlinear Integral Equation via Fixed Point of Cyclic αLψ -Rational Contraction Mappings in Metric-Like Spaces	Bulletin of the Brazilian Mathematical Society, 2020, 51(1), pp. 81–105
18	Modified CQ-Algorithms for G -Nonexpansive Mappings in Hilbert Spaces Involving Graphs	New Mathematics and Natural Computation, 2020, 16(1), pp. 89–103
19	Advanced algorithms and common solutions to variational inequalities	Symmetry, 2020, 12(7), 1198
20	On (φ, ψ)-metric spaces with applications	Symmetry, 2020, 12(9), 1459
21	Generalized dynamic process for an extended multi-valued F-contraction in metric-like spaces with applications	Alexandria Engineering Journal, 2020, 59(5), pp. 3817–3825
22	A tripled fixed point technique for solving a tripled-system of integral equations and Markov process in CCbMS	Advances in Difference Equations, 2020, 2020(1), 567
23	The technique of quadruple fixed points for solving functional integral equations under a measure of noncompactness	Mathematics, 2020, 8(12), pp. 1–21, 2130
24	Tripled fixed point techniques for solving system of tripled-fractional differential equations	AIMS Mathematics, 2021, 6(3), pp. 2330–2343
25	Exciting Fixed Point Results on a Novel Space with Supportive Applications	Journal of Function Spaces, 2021, 2021, 6613774
26	Analytical Solution for Differential and Nonlinear Integral Equations via Fωe -Suzuki Contractions in	Journal of Function Spaces, 2021, 2021, 6128586

	Modified ωe -Metric-Like Spaces-	
27	Solutions of Fractional Differential Type Equations by Fixed Point Techniques for Multivalued Contractions	Complexity, 2021, 2021, 5730853
28	Recent Fixed-Point Results for θ - Contraction Mappings in Rectangular M- Metric Spaces with Supportive Application	Journal of Mathematics, 2021, 2021, 5564248
29	Solving a Split Feasibility Problem by the Strong Convergence of Two Projection Algorithms in Hilbert Spaces	Journal of Function Spaces, 2021, 2021, 5562694
30	Accelerated modified inertial mann and viscosity algorithms to find a fixed point of α-inverse strongly monotone operators	AIMS Mathematics, 2021, 6(8), pp. 9000–9019
31	A Fixed Point Technique for Set-Valued Contractions with Supportive Applications	Advances in Mathematical Physics, 2021, 2021, 6880478
32	Solving singular coupled fractional differential equations with integral boundary constraints by coupled fixed point methodology	AIMS Mathematics, 2021, 6(12), pp. 13370–13391
33	A Fixed Point Technique for Solving an Integro- Differential Equation Using Mixed-Monotone Mappings	Journal of Function Spaces, 2021, 2021, 9925073
34	Fixed point results for multivalued mappings with applications	Journal of Function Spaces, 2021, 2021, 9921728
35	Wardowski's Contraction and Fixed Point Technique for Solving Systems of Functional and Integral Equations	Journal of Function Spaces, 2021, 2021, 7017046
36	Approximation of the fixed point for unified three- step iterative algorithm with convergence analysis in busemann spaces	Axioms, 2021, 10(1), pp. 1–11, 26
37	Tikhonov regularization terms for accelerating inertial mann-like algorithm with applications	Symmetry, 2021, 13(4), 554
38	A weak tripled contraction for solving a fuzzy global optimization problem in fuzzy metric spaces	Symmetry, 2021, 13(4), 565
39	A novel four-step iterative scheme for approximating the fixed point with a supportive application	Information Sciences Letters, 2021, 10(2), pp. 333–339

	Applications to boundary value problems and		
40	homotopy theory via tripled fixed point techniques	Mathematics, 2021, 9(16), 2012	
'	in partially metric spaces	, , , , , , ,	
	Exciting fixed point results under a new control		
41	function with supportive application in fuzzy cone	Mathematics, 2021, 9(18), 2267	
	metric spaces		
	Modified Hybrid Projection Methods with SP	Pullatin of the Ironian Mathematical Society 2001	
42	Iterations for Quasi-Nonexpansive Multivalued	Bulletin of the Iranian Mathematical Society, 2021,	
	Mappings in Hilbert Spaces	47(5), pp. 1399–1422	
	Effect of shrinking projection and CQ-methods on	Rendiconti del Circolo Matematico di	
43	two inertial forward–backward algorithms for	Palermo, 2021, 70(3), pp. 1669–1683	
	solving variational inclusion problems	1 alc11110, 2021, /0(3), pp. 1009–1003	
	Contributions of the fixed point technique to solve		
44	the 2D Volterra integral equations, Riemann-	Advances in Difference Equations, 2021, 2021(1),	
44	Liouville fractional integrals, and Atangana-	97	
	Baleanu integral operators		
	Existence theorem for a unique solution to a	Advances in Difference Equations, 2021, 2021(1),	
45	coupled system of impulsive fractional differential	242	
	equations in complex-valued fuzzy metric spaces		
	New coincidence point results for generalized	Advances in Difference Equations, 2021, 2021(1),	
46	graph-preserving multivalued mappings with	334	
	applications	307	
47	Solving a fractional-order differential equation	Fractal and Fractional, 2021, 5(4), 159	
7/	using rational symmetric contraction mappings		
	New contributions for tripled fixed point	Alexandria Engineering Journal, 2022, 61(4), pp.	
48	methodologies via a generalized variational	2687–2696	
	principle with applications		