(d) Characters and operations

- We can identify the symmetry label of the orbital by comparing the changes that occur to an orbital under each operation, and then comparing the resulting +1 or -1 with the entries in a row of the character table for the point group concerned
- For the rows labelled E or T, the characters in a row of the table are the sums of the characters summarizing the behavior of the individual orbitals in the basis.
- Thus, if one member of a doubly degenerate pair remains unchanged under a symmetry operation but the other changes sign, then the entry is reported as $\chi=1-1=0$.

The two orbitals shown here have different properties under reflection through the mirror plane: one change sign (Character -1); the other does not (character +1)

- Consider the $\mathrm{O} 2 p_{x}$ orbital in $\mathrm{H}_{2} \mathrm{O}$.
- the labels available for the orbitals are a_{1}, a_{2}, b_{1} and b_{2}.
- Under a 180° rotation $\left(C_{2}\right)$ the orbital changes sign, so it must be either B_{1} or $\mathrm{B}_{2}(\chi=-1)$
- The $\mathrm{O} 2 p_{x}$ orbital also changes sign under the reflection, which identifies it as B_{1}
- Similarly, $\mathrm{O} 2 p_{y}$ changes sign under C_{2} but not under σ_{v}, therefore, it can contribute to b_{2} orbitals

The behaviour of s, p, and d orbitals on a central atom under the symmetry operations of the molecule is so important that the symmetry species of these orbitals are generally indicated in a character table.
We look at the symmetry species of x, y, and z.

- Thus, the position of z shows that p_{z} (which is proportional to $z f(r)$), has symmetry species A_{l} (in $C_{3 v}$ Table)
- Whereas p_{x} and p_{y} (which are proportional to $x f(r)$ and $y f(r)$, respectively) are jointly of E symmetry.

$C_{3 v}$ $(3 m)$	E	$2 C_{3}$	$3 \sigma_{v}$		
$\mathrm{~A}_{1}$	1	1	1	(z)	$x^{2}+y^{2}, z^{2}$
$\mathrm{~A}_{2}$	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, 2 x y\right)(x z, y z)$

- An s orbital on the central atom always spans the fully symmetrical irreducible representation of a group as it is unchanged under all symmetry operations.
- The five d orbitals of a shell are represented by $x y$ for $d_{x y}$, etc. and are also listed on the right of the character table.
- We can see at a glance that in $C_{3 v}, d_{x y}$ and $\mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}$ on a central atom jointly belong to E and hence form a doubly degenerate pair

(e) The classification of linear combinations of orbitals

The same technique may be applied to linear combinations of orbitals on atoms that are related by symmetry transformations of the molecule

- such as the combination $\psi_{l}=\psi_{A}+\psi_{B}+\psi_{c}$ of the three H / s orbitals in the $C_{3 v}$ molecule NH_{3}.

This combination remains unchanged under a C_{3} rotation and under any of the three vertical reflections of the group, so its characters are:

- $\chi(E)=1 \quad \chi\left(C_{3}\right)=1$ $\chi\left(\sigma_{v}\right)=1$
- ψ_{l} is of symmetry species A_{1} and contributes to a_{1} molecular orbitals in NH_{3}.

The three H $7 s$ orbitals used to construct symmetry-adapted linear combinations in $C_{3 v}$ molecule such as NH_{3}.

- Consider the orbital $\psi_{l}=$ $\psi_{A}-\psi_{B}$ in a $C_{2 v} \mathrm{NO}_{2}$ ion, where ψ_{A} is an $\mathrm{O} 2 p_{x}$ orbital on one O atom and ψ_{B} that on the other O atom
- The characters under the symmetry operations are
- $\chi(E)=1 \quad \chi\left(C_{2}\right)=1$ $\chi\left(\sigma_{\nu}\right)=-1 \quad \chi\left(\sigma_{\nu}^{\prime}\right)=-1$

One symmetry-adapted linear combination of
$\mathrm{O} 2 p_{x}$ orbitals in the $C_{2 v}$ NO_{2} ion

5 Vanishing integrals and orbital overlap

- Suppose we had to evaluate the integral

$$
I=\int f_{1} f_{2} d \tau
$$

- For example, f_{l} might be an atomic orbital A on one atom and f_{2} an atomic orbital B on another atom, in which case / would be their overlap integral.
- If we knew that the integral is zero, we could say at once that a molecular orbital does not result from (A, B) overlap in that molecule.

(a) The criteria for vanishing integrals

28

The value of an integral /(for example, an area) is independent of the coordinate system used to evaluate it, as in the two choices shown in (a) and (b)

- The value of any integralis independent of the orientation of the molecule .
- In group theory we express this point by saying that / is invariant under any symmetry operation of the molecule, and that each operation brings about the trivial transformation $/ \rightarrow /$.
- Because $d \tau$ is invariant under any symmetry operation, it follows that the integral is nonzero only if the integrand itself, the product $f_{1} f_{2}$, is unchanged by any symmetry operation of the molecular point group.

Therefore, for / not to be zero, the integrand $f_{1} f_{2}$ must have symmetry species A_{1} (or its equivalent in the specific molecular point group).

- If the integrand changed sign under a symmetry operation, the integral would be the sum of equal and opposite contributions, and hence would be zero.
- We use the following procedure to deduce the symmetry species spanned by the product $f_{1} f_{2}$ and hence to see whether it does indeed span A_{1}
- 1 Decide on the symmetry species of the individual functions f_{l} and f_{2} by reference to the character table, and write their characters in two rows in the same order as in the table.
2 Multiply the numbers in each column, writing the results in the same order.
- 3 Inspect the row so produced, and see if it can be expressed as a sum of characters from each column of the group

