(d) Characters and operations

We can identify the symmetry label of the orbital by comparing the changes that occur to an orbital under each operation, and then comparing the resulting +1 or −1 with the entries in a row of the character table for the point group concerned

- For the rows labelled E or T, the characters in a row of the table are the sums of the characters summarizing the behavior of the individual orbitals in the basis.
- Thus, if one member of a doubly degenerate pair remains unchanged under a symmetry operation but the other changes sign, then the entry is reported as $\chi = 1 1 = 0$.

The two orbitals shown here have different properties under reflection through the mirror plane: one change sign (Character -1); the other does not (character +1)

- Consider the $O2p_x$ orbital in H_2O .
- the labels available for the orbitals are a₁, a₂, b₁ and b₂.
- Under a 180° rotation (C_2) the orbital changes sign, so it must be either B₁ or B₂ ($\chi = -1$)
- The O2p_x orbital also changes sign under the reflection, which identifies it as B₁
- Similarly, $O2p_y$ changes sign under C_2 but not under σ_v ' therefore, it can contribute to b_2 orbitals

- The behaviour of s, p, and d orbitals on a central atom under the symmetry operations of the molecule is so important that the symmetry species of these orbitals are generally indicated in a character table.
- We look at the symmetry species of *x*, *y*, and *z*.
- Thus, the position of z shows that p_z (which is proportional to zf(r)), has symmetry species A_1 (in C_{3v} Table)
- Whereas p_x and p_y (which are proportional to xf(r) and yf(r), respectively) are jointly of E symmetry.

C_{3v}	Ε	$2C_3$	$3\sigma_v$		
(3m)					
A	1	1	1	Z	$x^2 + y^2, z^2$
$\overline{A_2}$	1	1	-1	R_z	
E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2 - y^2, 2xy)(xz, yz)$

- An s orbital on the central atom always spans the fully symmetrical irreducible representation of a group as it is unchanged under all symmetry operations.
- The five *d* orbitals of a shell are represented by xy for d_{xy} , etc. and are also listed on the right of the character table.
- We can see at a glance that in $C_{3\nu}$, d_{xy} and d_{x2-y2} on a central atom jointly belong to E and hence form a doubly degenerate pair

(e) The classification of linear combinations of orbitals

- The same technique may be applied to linear combinations of orbitals on atoms that are related by symmetry transformations of the molecule
- such as the combination $\psi_1 = \psi_A + \psi_B + \psi_c$ of the three H *Is* orbitals in the C_{3v} molecule NH₃.

- This combination remains unchanged under a C₃ rotation and under any of the three vertical reflections of the group, so its characters are:
- $\chi(E) = 1 \qquad \chi(C_3) = 1$ $\chi(\sigma_v) = 1$
- ψ_1 is of symmetry species A₁ and contributes to a_1 molecular orbitals in NH₃.

 $\psi_1 \sim a_1$

SC SB

The three H 1s orbitals used to construct symmetry-adapted linear combinations in $C_{3\nu}$ molecule such as NH₃.

- Consider the orbital $\psi_1 = \psi_A \psi_B$ in a $C_{2\nu} NO_2$ ion, where ψ_A is an $O2p_x$ orbital on one O atom and ψ_B that on the other O atom
- The characters under the symmetry operations are

$$\chi(E) = I \qquad \chi(C_2) = 1$$

$$\chi(\sigma_v) = -1 \qquad \chi(\sigma'_v) = -1$$

 $\psi_1 \sim a_2$

One symmetry-adapted linear combination of $O2p_x$ orbitals in the C_{2v} NO_2 ion

5 Vanishing integrals and orbital overlap

Suppose we had to evaluate the integral

$$I = \int f_1 f_2 d\tau$$

- For example, f₁ might be an atomic orbital A on one atom and f₂ an atomic orbital B on another atom, in which case / would be their overlap integral.
- If we knew that the integral is zero, we could say at once that a molecular orbital does not result from (A,B) overlap in that molecule.

(a) The criteria for vanishing integrals

The value of an integral / (for example, an area) is independent of the coordinate system used to evaluate it, as in the two choices shown in (a) and (b)

- The value of any integralis independent of the orientation of the molecule.
- In group theory we express this point by saying that *I is invariant under any symmetry* operation of the molecule, and that each operation brings about the trivial transformation *I* → *I*.
- Because $d\tau$ is invariant under any symmetry operation, it follows that the integral is nonzero only if the integrand itself, the product f_1f_2 , is unchanged by any symmetry operation of the molecular point group.

- Therefore, for / not to be zero, the integrand f₁f₂ must have symmetry species A₁ (or its equivalent in the specific molecular point group).
- If the integrand changed sign under a symmetry operation, the integral would be the sum of equal and opposite contributions, and hence would be zero.

- We use the following procedure to deduce the symmetry species spanned by the product f₁f₂ and hence to see whether it does indeed span A₁
- Decide on the symmetry species of the individual functions f₁ and f₂ by reference to the character table, and write their characters in two rows in the same order as in the table.
- A Multiply the numbers in each column, writing the results in the same order.
- Inspect the row so produced, and see if it can be expressed as a sum of characters from each column of the group