Molecular symmetry and
 Group theory

Molecular symmetry

- The concept of 'shape' can be sharpen systematically into a precise definition of 'symmetry
- The systematic discussion of symmetry is called group theory
- Any molecule can be classified according to its symmetry and how to use this classification to discuss molecular properties
- The symmetry transformations of orbitals can be used to set up a labeling scheme
- These symmetry labels are used to identify integrals that necessarily vanish
- By considering the symmetry properties of integrals, we see that it is possible to derive the selection rules that govern spectroscopic transitions

Applications of Group Theory

1. Predicting polarity of molecules.
2. Predicting chirality of molecules.
3. Predicting the orbitals used in σ bonds. Group theory can be used to predict which orbitals on a central atom can be mixed to create hybrid orbitals.
4. Predicting the orbitals used in molecular orbitals. Molecular orbitals result from the combining or overlap of atomic orbitals, and they encompass the entire molecule.

Applications of Group Theory

5. Determining the symmetry properties of all molecular motion (rotations, translations and vibrations). Group theory can be used to predict which molecular vibrations will be seen in the infrared or Raman spectra.

The symmetry elements of objects

- Some objects are 'more symmetrical' than others
- A sphere is more symmetrical than a cube because it looks the same after it has been rotated through any angle about any diameter
- A cube looks the same only if it is rotated through certain angles about specific axes, such as $90^{\circ}, 180^{\circ}$, or 270°

Some of the symmetry
elements of a cube. The twofold, threefold, and four fold axes are labeled with the conventional system

NH_{3} molecule is
'more
symmetrical' than an $\mathrm{H}_{2} \mathrm{O}$

Fig 2: (a) $\mathrm{An}_{\mathrm{NH}}^{3}$
molecule has a
threefold $\left(C_{3}\right)$ axis and (b) an $\mathrm{H}_{2} \mathrm{O}$ molecule has a twofold $\left(C_{2}\right)$ axis. Both have other symmetry elements too.

Operations and symmetry elements

- An action that leaves an object looking the same after it has been carried out is called a symmetry operation
- Typical symmetry operations include rotations, reflections, and inversions
- There is a corresponding symmetry element for each symmetry operation, which is the point, line, or plane with respect to which the symmetry operation is performed
- A rotation (a symmetry operation) is carried out around an axis (the corresponding symmetry element)
- The classification of objects according to symmetry elements corresponding to operations that leave at least one common point unchanged gives rise to the point groups
- There are five kinds of symmetry operation (and five kinds of symmetry element) of this kind
- Considering crystals; symmetries arising from translation through space are called space groups
- The identity, E, consists of doing nothing
- The corresponding symmetry element is the entire object
- Because every molecule is indistinguishable from itself if nothing is done to it, every object possesses at least the identity element.
- One reason for including the identity is that some molecules have only this symmetry element (1); another reason is technical and connected with the detailed formulation of group theory

- An n-fold rotation (the operation) about an \mathbf{n} fold axis of symmetry, C_{n} (the corresponding element), is a rotation through $360^{\circ} / \mathrm{n}$.
- The operation C_{1} is a rotation through 360°, and is equivalent to the identity operation E
- An $\mathrm{H}_{2} \mathrm{O}$ molecule has one twofold axis, C_{2}
- An NH_{3} molecule has one threefold axis, C_{3}, with which is associated two symmetry operations, one being 120° rotation in a clockwise sense and the other 120° rotation in a counter-clockwise sense.

- A pentagon has a C_{5} axis, with two (clockwise and counter-clockwise) rotations through 72° associated with it.
- It also has an axis denoted C_{5}^{2}, corresponding to two successive C_{5} rotations; there are two such operations, one through 144° in a clockwise sense and the other through 144° in a counter-clockwise sense
- A cube has three C_{4} axes, four C_{3} axes, and six C_{2} axes

- However, even this high symmetry is exceeded by a sphere, which possesses an infinite number of symmetry axes (along any diameter) of all possible integral values of n
- If a molecule possesses several rotation axes, then the one (or more) with the greatest value of n is called the principal axis
- The principal axis of a benzene molecule is the sixfold axis perpendicular to the hexagonal ring (2)

2 Benzene

- A reflection (the operation) in a mirror plane, σ (the element), may contain the principal axis of a molecule or be perpendicular to it
- If the plane is parallel to the principal axis, it is called 'vertical' and denoted σ_{v}
- A vertical mirror plane that bisects the angle between two C_{2} axes is called a 'dihedral plane' and is denoted σ_{d}
- When the plane of symmetry is perpendicular to the principal axis it is called 'horizontal' and denoted σ_{h}

An $\mathrm{H}_{2} \mathrm{O}$ molecule has two mirror planes. They are both vertical (i.e. contain the principle axis), so are donated σ_{v} and σ_{v}^{\prime}

Dihedral mirror plane (σ_{d}) bisect the C_{2} axes perpendicular to the principle axis

- In an inversion (the operation) through a centre of symmetry, i (the element), we imagine taking each point in a molecule, moving it to the centre of the molecule, and then moving it out the same distance on the other side; that is, the point (x, y, z) is taken into the point $(-x,-y,-z)$.
- Neither an $\mathrm{H}_{2} \mathrm{O}$ molecule nor an NH_{3} molecule has a centre of inversion, but a sphere and a cube do have one.

Regular octahedron has a center of inversion (i)
$\mathrm{AC}_{6} \mathrm{H}_{6}$ molecule does have a centre of inversion, as does a regular octahedron ; a regular tetrahedron and a CH_{4} molecule do not

- An n-fold improper rotation (the operation) about an \mathbf{n}-fold axis of improper rotation or an n -fold improper rotation axis, S_{n}, (the symmetry element) is composed of two successive transformations
- The first component is a rotation through $360^{\circ} / \mathrm{n}$, and the second is a reflection through a plane perpendicular to the axis of that rotation
- Neither operation alone needs to be a symmetry operation. A CH ${ }_{4}$ molecule has three S_{4} axes

Improper Rotation in a Tetrahedral Molecule

A CH_{4} molecule has fourfold improper rotation axis $\left(S_{4}\right)$: the molecule is indistinguishable after 900 rotation followed by a reflection across the horizontal plane, but neither operation alone is a symmetry operation

(b) the staggered form of ethane has an S_{6} axis composed of a rotation followed by a reflection.

