HERMITE POLYNOMIALS

HERMITE'S EQUATION AND ITS SOLUTION

Hermite's equation is given by

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2x \frac{\mathrm{d}y}{\mathrm{d}x} + 2ny = 0, \tag{5.1}$$

Hermite polynomial of order n:

$$H_n(x) = \sum_{r=0}^{\left[\frac{1}{2}n\right]} (-1)^r \frac{n!}{r!(n-2r)!} (2x)^{n-2r}.$$

GENERATING FUNCTION

Theorem 5.1

$$e^{2tx-t^2}=\sum_{n=0}^{\infty}\frac{t^n}{n!}H_n(x).$$

Proof

We wish to pick out the coefficient of t^n in the power series expansion of exp $(2tx - t^2)$.

Now,

$$e^{2tx-t^2} = e^{2tx} e^{-t^2}$$

$$= \sum_{r=0}^{\infty} \frac{(2tx)^r}{r!} \sum_{s=0}^{\infty} \frac{(-t^2)^s}{s!}$$

$$= \sum_{r,s=0}^{\infty} (-1)^s \frac{(2x)^r}{r!s!} t^{r+2s}.$$

For a fixed value of s we obtain t^n by taking r + 2s = n, i.e., r = n - 2s, so that for this value of s the coefficient of t^n is just given by

$$(-1)^s \frac{(2x)^{n-2s}}{(n-2s)!s!}$$

The total coefficient of t^n is obtained by summing over all allowed values of s, and, since r = n - 2s, this implies that we must have $n - 2s \ge 0$, i.e., $s \le \frac{1}{2}n$. Thus, if n is even, s goes from 0 to $\frac{1}{2}n$, while if n is odd, s goes from 0 to $\frac{1}{2}(n-1)$; that is, in all cases, s goes from 0 to $[\frac{1}{2}n]$ with $[\frac{1}{2}n]$ defined as above.

Thus we have:

coefficient of
$$t^n = \sum_{s=0}^{\lfloor \frac{t}{n} \rfloor} (-1)^s \frac{1}{(n-2s)!s!} (2x)^{n-2s}$$

= $\frac{1}{n!} H_n(x)$,

(by definition (5.3)).

Theorem 5.2

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}.$$

Proof

By use of the generating function of theorem 5.1 and Taylor's theorem, which states that

$$F(t) = \sum_{n=0}^{\infty} \left(\frac{d^n F}{dt^n}\right)_{t=0} \frac{t^n}{n!},$$

we have

$$H_n(x) = \left[\frac{\partial^n}{\partial t^n} e^{2tx-t^2}\right]_{t=0}$$

$$= \left[\frac{\partial^n}{\partial t^n} e^{x^2-(x-t)^2}\right]_{t=0}$$

$$= e^{x^2} \left[\frac{\partial^n}{\partial t^n} e^{-(x-t)^2}\right]_{t=0}.$$

But

$$\frac{\partial}{\partial t}\mathbf{f}(x-t)=-\frac{\partial}{\partial x}\mathbf{f}(x-t),$$

so that

$$\frac{\partial^n}{\partial t^n} f(x-t) = (-1)^n \frac{\partial^n}{\partial x^n} f(x-t)$$

and we have

$$H_n(x) = (-1)^n e^{x^2} \left[\frac{\partial^n}{\partial x^n} e^{-(x-t)^2} \right]_{t=0}$$
$$= (-1)^n e^{x^2} \frac{\partial^n}{\partial x^n} e^{-x^2}$$
$$= (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

For the first few orders we obtain

$$H_0(x) = 1$$

 $H_1(x) = 2x$
 $H_2(x) = 4x^2 - 2$
 $H_3(x) = 8x^3 - 12x$
 $H_4(x) = 16x^4 - 48x^2 + 12$
 $H_5(x) = 32x^5 - 160x^3 + 120x$.

ORTHOGONALITY PROPERTIES OF THE HERMITE POLYNOMIALS

Theorem 5.5

$$\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_n(x) dx = 2^n n! (\sqrt{\pi}) \delta_{nm}.$$

Proof

We have

$$e^{-t^2+2tx}=\sum_{n=0}^{\infty}H_n(x)\frac{t^n}{n!}$$

and

$$e^{-s^2+2sx}=\sum_{m=0}^{\infty}H_m(x)\frac{s^m}{m!}$$

so that $\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx$ is the coefficient of $(t^n s^m)/(n!m!)$ in the expansion of $\int_{-\infty}^{\infty} e^{-x^2} e^{-t^2+2tx} e^{-s^2+2sx} dx$.

But
$$\int_{-\infty}^{\infty} e^{-x^2} e^{-t^2+2tx} e^{-s^2+2sx} dx$$

$$= e^{-t^2-s^2} \int_{-\infty}^{\infty} \exp\left\{-x^2+2(s+t)x\right\} dx$$

$$= e^{-t^2-s^2} \int_{-\infty}^{\infty} \exp\left[-\left\{x-(s+t)\right\}^2+(s+t)^2\right] dx$$

$$= e^{2st} \int_{-\infty}^{\infty} \exp\left[-\left\{x-(s+t)\right\}^2\right] dx$$

$$= e^{2st} \int_{-\infty}^{\infty} \exp\left(-u^2\right) du$$
(changing the variable of integration to $u = x - (s+t)$)
$$= e^{2st} \sqrt{\pi}$$
(by the corollary to theorem 2.6)
$$\sum_{n=0}^{\infty} (\sqrt{\pi})^{2^n s^n t^n} n!$$

Hence the coefficient of $(t^n s^m)/(n!m!)$ is zero if $m \neq n$ and is $(\sqrt{\pi})2^n n!$ when m = n.

Hence
$$\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ (\sqrt{\pi}) 2^n n! & \text{if } m = n \end{cases}$$

or, making use of the Kronecker delta,

$$\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_n(x) dx = (\sqrt{\pi}) 2^n n! \delta_{mn}.$$

Example 3

Show that
$$P_n(x) = \frac{2}{(\sqrt{\pi})n!} \int_0^\infty t^n e^{-t^2} H_n(xt) dt$$
.

From equation (5.3) we have

$$H_n(xt) = \sum_{r=0}^{\left[\frac{1}{2}n\right]} (-1)^r \frac{n!}{r!(n-2r)!} (2xt)^{n-2r}$$

so that

$$\frac{2}{(\sqrt{\pi})^{n}!} \int_{0}^{\infty} t^{n} e^{-t^{2}} H_{n}(xt) dt$$

$$= \frac{2}{(\sqrt{\pi})^{n}!} \int_{0}^{\infty} t^{n} e^{-t^{2}} \sum_{r=0}^{\lfloor \frac{1}{2}n \rfloor} (-1)^{r} \frac{n!}{r!(n-2r)!} 2^{n-2r} x^{n-2r} t^{n-2r} dt$$

$$= \sum_{r=0}^{\lfloor \frac{1}{2}n \rfloor} \frac{2^{n-2r+1}(-1)^{r} x^{n-2r}}{(\sqrt{\pi})^{r}!(n-2r)!} \int_{0}^{\infty} e^{-t^{2}} t^{2n-2r} dt$$

$$\sum_{r=0}^{\lfloor \frac{1}{2}n \rfloor} \frac{2^{n-2r+1}(-1)^{r} x^{n-2r}}{(\sqrt{\pi})^{r}!(n-2r)!} \frac{1}{2} \Gamma(n-r+\frac{1}{2})$$
(by theorem 2.4)

$$= \sum_{r=0}^{\lfloor \frac{1}{2}n \rfloor} \frac{2^{n-2r}(-1)^r x^{n-2r}}{(\sqrt{\pi})^r ! (n-2r)!} \frac{(2n-2r)!}{2^{2n-2r}(n-r)!} \sqrt{\pi}$$
(by the corollary to theorem 2.10)
$$= \sum_{r=0}^{\lfloor \frac{1}{2}n \rfloor} (-1)^r \frac{(2n-2r)!}{2^n r! (n-2r)! (n-r)!} x^{n-2r}$$

$$= P_n(x),$$
(by equation (3.17)).

ا.د/ زينهم جمعة