HERMITE POLYNOMIALS

HERMITE’S EQUATION AND ITS SOLUTION

Hermite’s equation is given by
d?y dy B
E?- — 2x(Tx ‘—[— Zny = O, (5.1)
Hermite polynomial of order n:
H (x =Z —1Y - i 2x)n-2or,
(%) (1) ri(n — Zr)!( )

r=0

GENERATING FUNCTION
Theorem 5.1

o4

o4zt g
S - Hifs).

n=0
Proor

We wish to pick out the coefficient of #* in the power series expansion
of exp (2tx — 1),
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For a fixed value of s we obtain #* by takingr + 2s = n,i.e.,r =n — 2s,

so that for this value of s the coefficient of #* is just given by
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The total coefficient of #* is obtained by summing over all allowed
values of s, and, since r =n — 2s, this implies that we must have
n — 2s > 0,1.e., s < 4n. Thus, if n is even, s goes from 0 to in, while if n
is odd, s goes from 0 to §(n — 1); that is, in all cases, s goes from 0 to [}#]
with [$n] defined as above.

Thus we have:
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By use of the generating function of theorem 5.1 and Taylor’s theorem,
which states that
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so that
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For the first few orders we obtain

Hy(x) = 1

Hi(x) = 2x

Hyx) — 4x2 — 2

Hi(x) — 8x3% — 12x

H,(x) — 16x* — 48x2 |+ 12
H(x) = 32x% — 160x% + 120x.

ORTHOGONALITY PROPERTIES OF THE HERMITE
POLYNOMIALS

Theorem 5.5
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Hence the coefficient of (*s™)/(n!m!) is zero if m == n and is (4/7)2"n!
when m = n.
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or, making usc of the Kronecker delta,
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Example 3
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(by equation (3.17)).
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