

Outline

* Compiler must do the storage allocation and provide
access to variables and data

°* Memory management

e Stack allocation
* Heap management

e Garbage collection

Storage Organization

Static vs. Dynamic Allocation

e Static: Compile time, Dynamic: Runtime allocation
* Many compilers use some combination of following

e Stack storage: for local variables, parameters and so on

e Heap storage: Data that may outlive the call to the
procedure that created it

e Stack allocation is a valid allocation for procedures
since procedure calls are nested

-

" Sketch of a quicksort program

int afl11];
void readArray() { /* Reads 9 integers into a[l], ...,a[9]. */
int 1i;

}
int partition(int m, int n) {
/* Picks a separator value v, and partitions a[m .. n| so that
alm ..p — 1] are less than v, alp] = v, and a[p + 1..n] are
equal to or greater than v. Returns p. */

¥
void quicksort(int m, int n) {
int 1;
if (n > m) {
i = partition(m, n);
quicksort(m, i-1);
quicksort(i+l, n);
}
¥
main() {
readArray();
al0] = -9999;
al[10] = 9999;

quicksort(1,9);

Activation for Quicksort

enter main()
enter readArray()
leave readArray()
enter quicksort(1,9)
enter partition(1,9)
leave partition(1,9)
enter quicksort(1,3)

leave quicksort(1,3)
enter quicksort(5,9)

leave quicksort(5,9)
leave quicksort(1,9)
leave main()

~ Activation tree representing calls during
an execution of quicksort

r q(1,9)

p(1,9) g(1,

| \

q(5,9)

PARN PARN

p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)

IR 71N

p(2,3) q(2,1) q(3,3) p(7,9) q(7.7) ¢(9,9)

Activation records

* Procedure calls and returns are usaully managed by a
run-time stack called the control stack.

e Each live activation has an activation record
(sometimes called a frame)

* The root of activation tree is at the bottom of the stack

* The current execution path specifies the content of the
stack with the last activation has record in the top of
the stack.

A General Activation Record

Actual parameters |

Temporaries

Activation Record

* Temporary values

* Local data

* A saved machine status

* An “access link”

* A control link

* Space for the return value of the called function

* The actual parameters used by the calling procedure

Downward-growing stack of activation records

main ‘ main

integer a[11] |

(a) Frame for main

TrLatT
B

ro g(1,9)

integer a[11]

main

integer m, n

qll,

| integer i |

/

r

| integer a[11] |

integer 1

(b) r is activated

roq(1,9)

p(1,9) a(1,3)

p(1,3) q(1,0)

integer af11]

main

integer m, n

integer i

Designing Calling Sequences

® Values communicated between caller and callee are
generally placed at the beginning of callee’s activation
record

* Fixed-length items: are generally placed at the middle

* Jtems whose size may not be known early enough: are
placed at the end of activation record

* We must locate the top-of-stack pointer judiciously: a
common approach is to have it point to the end of

fixed length fields.

Division of tasks between caller and callee

Parameters and returned value

~ Condrol link

Links and saved status

Temporaries and local data

Parameters and returned value

"~ Control link
Links and saved status

Temporaries and local data

i

Caller’s
activation

recFrd

Caller’s
responsibility ‘I‘

Callee’s
activation
record

Callee’s
responsibility l

calling sequence

o T

he caller evaluates the actual parameters

o T

he caller stores a return address and the old value of

top-sp into the callee's activation record.

* The callee saves the register values and other status
information.

* The callee initializes its local data and begins
execution.

corresponding return sequence

* The callee places the return value next to the
parameters

* Using information in the machine-status field, the

callee restores top-sp and other registers, and then
branches to the return address that the caller placed in

the status field.

* Although top-sp has been decremented, the caller
knows where the return value is, relative to the current
value of top-sp; the caller therefore may use that value.

i |

Activation record
for p

%

1

Activation record for
procedure g called by p

Arrays of g

ML

* ML is a functional language

* Variables are defined, and have their unchangeable
values initialized, by a statement of the form:

val (name) = (expression)

* Functions are defined using the syntax:
fun (name) ((arguments)) = (body)

e For function bodies we shall use let-statements of the
form:

let (list of definitions) in (statements) end

= A version of quicksort, in ML style, using
nested functions

1) fun sort(inputFile, outputFile) =
let
val a = array(11,0);
fun readArray(inputFile) = --- ;
Coa e
fun exchange(i,j) =

Ca e
fun gquicksort(m,n) =
let
val v = ---
fun partition(y,z) =
B e T oaes EIﬂhﬂﬂEE

- v .-+ partition :--- gquicksort

- readArray --- quicksort ---

access link

= = = o = mm —

(d)

\

V

~ Sketch of ML program that uses function-

parameters
fun a(x) =
let
fun b(f) =
v ouoa f . ;
fun c(y) =
let
fun d(z) = ---
in
- b(d) ---
end
in
- oe(1) .-

end;

\

=

PActual parameters carry their
access link with them

Maintaining the Display

Maintaining the Display (Cont.)

d[1] ~ d(1] -
d[2] ~ d[2] xﬁ\,
d[3] ~ d(3] =

(c) , \

\.

Memory Manager

e Two basic functions:
e Allocation
e Deallocation

* Properties of memory managers:

e Space efficiency
e Program efficiency
e Low overhead

Tpical Memory Hierarchy Configurations

Typical Sizes Typical Access Times

> 2GB Virtual Memory (Disk) 3 - 15 ms

:

256MB - 2GB Physical Memory
128KB - 4MB 2nd-Level Cache

] 1st-Level Cache

-

1 Registers (Processor)

Locality in Programs

The conventional wisdom is that programs spend 9o% of
their time executing 10% of the code:

* Programs often contain many instructions that are
never executed.

* Only a small fraction of the code that could be invoked
is actually executed in a typical run of the program.

* The typical program spends most of its time executing
innermost loops and tight recursive cycles in a
program.

Part of a Heap

Chunk A

..-—-—'-_._

__-__-_-__._.—._._

Chunk B

e e—

Chunk

.- 101200

20010

0100,

1100:0

i

=g

'Garbage Collection

The Essence

* Programming is easier if the run-time system
“garbage-collects” --- makes space belonging to
unusable data available for reuse.

e Java does it; C does not.

e But stack allocation in C gets some of the advantage.

Desiderata

1. Speed --- low overhead for garbage collector.

>. Little program interruption.

e Many collectors shut down the program to hunt for
garbage.

3. Locality --- data that is used together is placed
together on pages, cache-lines.

The Model --- (1)

* There is a root set of data that is a-priori reachable.

e Example: In Java, root set = static class variables plus
variables on run-time stack.

* Reachable data : root set plus anything referenced
by something reachable.

The Model --- (2)

* Things requiring space are “objects.”

* Available space is in a heap --- large area managed by
the run-time system.

e Allocator tinds space for new objects.
» Space for an object is a chunk.

e Garbage collector tinds unusable objects, returns their
space to the heap, and maybe moves objects around in
the heap.

Object 2 Object 3

Taxonomy
Garbage Collectors

.

Reference- Trace-

Counters Based

A

Reference Counting

* The simplest (but imperfect) method is to give each
object a reference count = number of references to
this object.

e OK if objects have no internal references.

¢ Initially, object has one reference.

* If reference count becomes o, object is garbage and its
space becomes available.

Examples

Integer 1 = new Integer (10);

e Integer object is created with RC =1.

7 = k; (j, k are Integer references.)

e Object referenced by j has RC--.
e Object referenced by k has RC++.

Transitive Effects

e If an object reaches RC=0 and is collected, the
references within that object disappear.

* Follow these references and decrement RC in the
objects reached.

* That may result in more objects with RC=0, leading to
recursive collection.

Example: Reference Counting

Root
Object

Example: Reference Counting

Root
Object

Example: Reference Counting

Root
Object

Example: Reference Counting

Root
Object

B, D, and E are @

garbage, but their
reference counts
are all > 0. They
never get collected.

D(1) s E(1)

Taxonomy

Garbage Collectors
/ \

Reference- Trace-

Counters - Based\

Stop-the-World Short-Pause

e e
Mark-and- Mark-and-

Compact

Four States of Memory Chunks

Free = not holding an object; available for
allocation.

Unreached = Holds an object, but has not yet

been reached from the root set.

Unscanned = Reached from the root set, but its
references not yet followed.

Scanned = Reached and references followed.

\

e ———

arking

Assume all objects in Unreached state.

Start with the root set. Put them in state Unscanned.

while Unscanned objects remain do
examine one of these objects;
make its state be Scanned;

add all referenced objects to Unscanned
if they have not been there;

end;

Sweeping

* Place all objects still in the Unreached state into the
Free state.

* Place all objects in Scanned state into the Unreached

state.
 To prepare for the next mark-and-sweep.

Taxonomy

Garbage Collectors
/ \

Reference- Trace-

Counters - Based\

Stop-the-World Short-Pause
e -

Mark-and- Mark-and-

/Sweep\ Compact

Basic Baker’s

Baker’s Algorithm --- (1)

* Problem: The basic algorithm takes time proportional
to the heap size.

e Because you must visit all objects to see if they are
Unreached.

* Baker’s algorithm keeps a list of all allocated chucks of
memory, as well as the Free list.

Baker’s Algorithm --- (2)

e ey change: In the sweep, look only at the list of
allocated chunks.

* Those that are not marked as Scanned are garbage

and are moved to the Free list.

® Those in the Scanned state are put in the
Unreached state.

e For the next collection.

Taxonomy

Garbage Collectors
/ \

Reference- Trace-

Counters - Based\

Stop-the-World Short-Pause
e -

Mark-and- Mark-and-

/Sweep\ Qompact

Basic Baker’s Basic

Issue: Why Compact?

* Compact = move reachable objects to contiguous
memory.

* Locality --- fewer pages or cache-lines needed to hold
the active data.

* Fragmentation --- available space must be managed so
there is space to store large objects.

Mark-and-Compact

1. Mark reachable objects as before.

>. Maintain a table (hash?) from reached chunks to
new locations for the objects in those chunks.

e Scan chunks from low end of heap.

e Maintain pointer free that counts how much
space is used by reached objects so far.

Mark-and-Compact --- (2)

3. Move all reached objects to their new locations,
and also retarget all references in those objects to
the new locations.

e Use the table of new locations.

4. Retarget root references.

Example: Mark-and-Compact

\ 4
A

Taxonomy

Garbage Collectors
/ \

Reference- Trace-

Counters - Based\

Stop-the-World Short-Pause
e -

Mark-and- Mark-and-
/Sweap\ Qompgct

Basic Baker’s Basic Cheney’s

A different Cheney, BTW, so no jokes, please.

62

~ Cheney’s Copying Collector

* A shotgun approach to GC.

* 2 heaps: Allocate space in one, copy to second when
first is full, then swap roles.

e Maintain table of new locations.

* Assoon as an object is reached, give it the next free
chunk in the second heap.

* Asyou scan objects, adjust their references to point
to second heap.

Taxonomy

Garbage Collectors
/ \

Reference- Trace-

Counters - Based\

Stop-the-World Short-Pause
e - /

Mark-and- Mark-and- Incremental Partial
/Sweap\ Eompgct

Basic Baker’s Basic Cheney’s

Short-Pause Garbage-Collection

1. Incremental --- run garbage collection in parallel
with mutation (operation of the program).

Partial --- stop the mutation, but only briefly, to
garbage collect a part of the heap.

Problem With Incremental GC

* OK to mark garbage as reachable.
* Not OK to GC a reachable object.
e If a reference r within a Scanned object is mutated

to point to an Unreached object, the latter may be
garbage-collected anyway.

e Subtle point: How do you point to an Unreached
object?

One Solution: Write Barriers

* Intercept every write of a reference in a scanned object.
* Place the new object referred to on the Unscanned list.

» A trick: protect all pages containing Scanned objects.

e A hardware interrupt will invoke the fixup.

Taxonomy

Garbage Collectors
/ \

Reference- Trace-

Counters - Based\

Stop-the-World Short-Pause
e - /

Mark-and- Mark-and- Incremental Partial
/Sweap\ Eompgct

Basic Baker’s Basic Cheney’s Generational

The Object Life-Cycle

* “Most objects die young.’

e But those that survive one GC are likely to survive many.

* Tailor GC to spend more time on regions of the heap
where objects have just been created.

e Gives a better ratio of reclaimed space per unit time.

Partial Garbage Collection

* We collect one part(ition) of the heap.

e The target set.

* We maintain for each partition a remembered set of
those objects outside the partition (the stable set) that
refer to objects in the target set.

e Write barriers can be used to maintain the remembered
set.

Collecting a Partition

* To collect a part of the heap:

1. Add the remembered set for that partition to the root
set.

>. Do areachability analysis as before.

* Note the resulting Scanned set may include garbage.

Example: “Reachable” Garbage

In the remembered set

1
4

The target
partition

... Not reached from
the root set

Stable set

Generational Garbage Collection

* Divide the heap into partitions Po, P1,...
e Each partition holds older objects than the one before it.
* Create new objects in Po, until it fills up.

* Garbage collect Po only, and move the reachable
objects to P1.

Generational GC --- (2)

* When P1 fills, garbage collect Po and P1, and put the
reachable objects in P2.

* [n general: When Pi fills, collect Po, P1,...,Pi and put

the reachable objects in P(i +1).

Taxonomy

Garbage Collectors
/ \

Reference- Trace-

Counters - Based\

Stop-the-World Short-Pause
e - /

Mark-and- Mark-and- Incremental Partial
/Sweap\ Qompgct

Basic Baker’s Basic Cheney’s Generational Train

The Train Algorithm

* Problem with generational GC:
1. Occasional total collection (last partition).

>. Long-lived objects move many times.

* Train algorithm useful for long-lived objects.

¢ Replaces the higher-numbered partitions in
generational GC.

Partitions = “Cars”

Train 1

Train 2

Train n

Carll

Car 12

Car 13

Car 21

Car 22

Organization of Heap

* There can be any number of trains, and each train can
have any number of cars.

e You need to decide on a policy that gives a reasonable
number of each.

* New objects can be placed in last car of last train, or
start a new car or even a new train.

Garbage-Collection Steps

1. Collect the first car of the first train.

5. Collect the entire first train if there are no references
from the root set or other trains.

e Important: this is how we find and eliminate large,
cyclic garbage structures.

Remembered Sets

e Each car has a remembered set of references from later
trains and later cars of the same train.

* Important: since we only collect first cars and trains,

we never need to worry about “forward” references (to
later trains or later cars of the same train).

eotiec Ingt e

First Train

* Do a partial collection as before, using every other
car/train as the stable set.

* Move all Reachable objects of the first car
somewhere else.

® Getrid of the car.

Moving Reachable Objects

* If object 0 has a reference from another train, pick one
such train and move o to that train.

e Same car as reference, if possible, else make new car.

¢ If references only from root set or first train, move o to
another car of first train, or create new car.

Panic Mode

® The problem: it is possible that when collecting the
first car, nothing is garbage.

* We then have to create a new car of the first train that

is essentially the same as the old first car.

Panic Mode --- (2)

e [f that happens, we go into panic mode, which
requires that:
1. If areference to any object in the first train is

rewritten, we make the new reference a “dummy”
member of the root set.

During GC, if we encounter a reference from the
“root set,” we move the referenced object to another

train.

Panic Mode --- (3)

e Subtle point: If references to the first train never
mutate, eventually all reachable objects will be sucked
out of the first train, leaving cyclic garbage.

* But perversely, the last reference to a first-train object
could move around so it is never to the first car.

