
1

Compiler Construction

Lecture 9

Type Checking

2

Type Checking (Chapter 6)

3

Type Checking

TYPE CHECKING is the main activity in semantic analysis.

Goal: calculate and ensure consistency of the type of every
expression in a program

If there are type errors, we need to notify the user.

Otherwise, we need the type information to generate code that is
correct.

4

Type Systems and Type Expressions

5

Type systems

Every language has a set of types and rules for assigning
types to language constructs.

Example from the C specification:
− “The result of the unary & operator is a pointer to the object

referred to by the operand. If the type of the operand is ‘…’

then the type of the result is ‘pointer to …’

Usually, every expression has a type.

Type have structure: the type ‘pointer to int’ is
CONSTRUCTED from the type ‘int’

6

Basic vs. constructed types

Most programming languages have basic and
types.

BASIC TYPES are the atomic types provided by the
− Pascal: boolean, character, integer, real

− C: char, int, float, double

CONSTRUCTED TYPES are built up from basic types.
− Pascal: arrays, records, sets, pointers

− C: arrays, structs, pointers

7

Type expressions

We denote the type of language constructs with TYPE

EXPRESSIONS.

Type expressions are built up with TYPE CONSTRUCTORS.

1. A basic type is a type expression. The basic types are
boolean, char, integer, and real. The special basic type
type_error signifies an error. The special type void signifies
“no type”

2. A type name is a type expression (type names are like
typedefs in C)

8

Type expressions

3. A type constructor applied to type expressions is a type expression.
a. Arrays: if T is a type expression, then pointer(T) is a type expression

denoting the type “pointer to an object of type T”
Array(I,T) I: index set, T: element type

b. Products: if T1 and T2 are type expressions, then their Cartesian product
T1 × T2 is also a type expression.

c. Records: a record is a special kind of product in which the fields have
names (examples below)

d. Pointers: if T is a type expression, then pointer(T) is a type expression
denoting the type “pointer to an object of type T”

e. Functions: functions map elements of a domain D to a range R, so we write
D -> R to denote “function mapping objects of type D to objects of type R”
(examples below)

4. Type expressions may contain variables, whose values are themselves
type expressions. polymorphism

9

Record type expressions

The Pascal code

type row = record

address: integer;

lexeme: array[1..15] of char

end;

var table: array[1..10] of row;

associates type expression
record((address × integer) × (lexeme × array(1..15,char)))

with the variable row, and the type expression
array(1..101,record((address × integer) × (lexeme × array(1..15,char)))

with the variable table

10

Function type expressions

The C declaration
int *foo(char a, char b);

would associate type expression
char × char -> pointer(integer)

with foo. Some languages (like ML) allow all sorts of crazy
function types, e.g.

(integer -> integer) -> (integer -> integer)

denotes functions taking a function as input and returning
another function

11

Graph representation of type expressions

The recursive structure of a type can be represented with a
tree, e.g. for char × char -> pointer(integer):

Some compilers explicitly use graphs like these to represent
the types of expressions.

12

Type systems and checkers

A TYPE SYSTEM is a set of rules for assigning type
expressions to the parts of a program.

Every type checker implements some type system.

Syntax-directed type checking is a simple method to
implement a type checker.

13

Static vs. dynamic type checking

STATIC type checking is done at compile time.

DYNAMIC type checking is done at run time.

Any kind of type checking CAN be done at run time.

But this reduces run-time efficiency, so we want to do static
checking when possible.

A SOUND type system is one in which ALL type errors can be
found statically.

If the compiler guarantees that every program it accepts will
run without type errors, then the language is STRONGLY
TYPED.

14

An Example Type Checker

15

Example type checker

Let’s build a translation scheme to synthesize the type of
every expression from its subexpressions.

Here is a Pascal-like grammar for a sequence of declarations
(D) followed by an expression (E)

Example program: key: integer;

key mod 1999

P → D ; E
D → D ; D | id : T
T → char | integer | array [num] of T | ↑ T
E → literal | num | id | E mod E | E [E] | E ↑

16

The type system

The basic types are char and integer.

type_error signals an error.

All arrays start at 1, so
array[256] of char

leads to type expression: array(1..256,char)

The symbol ↑ in an declaration specifies a pointer type,
so

↑ integer

leads to type expression: pointer(integer)

17

Translation scheme for declarations

P → D ; E

D → D ; D

D → id : T { addtype(id.entry, T.type) }

T → char { T.type := char }

T → integer { T.type := integer }

T → ↑T1 { T.type := pointer(T1.type) }

T → array [num] of T1

{ T.type := array(1 .. num.val, T1.type) }

Try to derive the annotated parse tree for the

declaration X: array[100] of ↑ char

18

Type checking for expressions

E → literal { E.type := char }
E → num { E.type := integer }
E → id { E.type := lookup(id.entry) }
E → E1 mod E2 { if E1.type =integer and E2.type = integer

then E.type := integer
else E.type := type_error }

E → E1 [E2] { if E2.type = integer and E1.type = array(s,t)
then E.type := t else E.type := type_error }

E → E1↑ { if E1.type = pointer(t)
then E.type := t else E.type := type-error }

Once the identifiers and their types have been inserted into the
symbol table, we can check the type of the elements of an
expression:

19

How about boolean types?

Try adding

T -> boolean

Relational operators < <= = >= > <>

Logical connectives and or not

to the grammar, then add appropriate type checking semantic
actions.

20

Type checking for statements

Usually we assign the type VOID to statements.

If a type error is found during type checking, though, we should
set the type to type_error

Let’s change our grammar allow statements:

P → D ; S

i.e., a program is a sequence of declarations followed by a
sequence of statements.

21

Type checking for statements

S → id := E { if id.type = E.type then S.type := void

else S.type := type_error }

S → if E then S1 { if E.type = boolean

then S.type := S1.type

else S.type := type_error }

S → while E do S1 { if E.type = boolean

then S.type := S1.type

else S.type := type_error }

S → S1 ; S2 { if S1.type = void and S2.type = void

then S.type := void

else S.type := type_error.

Now we need to add productions and semantic actions:

22

Type checking for function calls

Suppose we add a production E → E (E)

Then we need productions for function declarations:

E → E1 (E2) { if E2.type = s and E1.type = s → t
then E.type := t
else E.type := type_error }

T → T1 → T2 { T.type := T1.type → T2.type }

and function calls:

23

Type checking for function calls

Multiple-argument functions, however, can be modeled as
functions that take a single PRODUCT argument.

root : (real → real) x real → real

this would model a function that takes a real function

over the reals, and a real, and returns a real. In C:

float root(float (*f)(float), float x);

24

Type expression equivalence

Type checkers need to ask questions like:

– “if E1.type == E2.type, then …”

What does it mean for two type expressions to be equal?

STRUCTURAL EQUIVALENCE says two types are the same if
they are made up of the same basic types and constructors.

NAME EQUIVALENCE says two types are the same if their
constituents have the SAME NAMES.

25

Structural Equivalence

boolean sequiv(s, t)
{

if s and t are the same basic type
return TRUE;

else if s == array(s1, s2) and t == array(t1, t2)
return sequiv(s1, t1) and sequiv(s2, t2)

else s == s1 x s2 and t = t1 x t2 then
return sequiv(s1, t1) and sequiv(s2, t2)

else if s == pointer(s1) and t == pointer(t1)
return sequiv(s1, t1)

else if s == s1 → s2 and t == t1 → t2 then
return sequiv(s1, t1) and sequiv(s2, t2)

return false
}

Try: int foo(int, float)

26

Relaxing structural equivalence

We don’t always want strict structural equivalence.

E.g. for arrays, we want to write functions that accept arrays
of any length.

To accomplish this, we would modify sequiv() to accept any
bounds:

…

else if s == array(s1, s2) and t == array(t1, t2)

return sequiv(s2, t2)

…

27

Encoding types

Recursive routines are very slow.

Recursive type checking routines increase the compiler’s run
time.

In the compilers of the 1970’s and 1980’s, compilers took too
long time to run.

So designers came up with ENCODINGS for types that allowed
for faster type checking.

See Example 6.1 in the text.

28

Name equivalence

Most languages allow association of names with type expressions. This
makes type equivalence trickier.

Example from Pascal:

type link = ↑cell;

var next: link;

last: link;

p: ↑ cell;

q,r: ↑ cell;

Do next, last, p, q, and r have the same type?

In Pascal, it depends on the implementation!

In structural equivalence, the types would be the same.

But NAME EQUIVALENCE requires identical NAMES.

29

Handling cyclic types

Suppose we had the Pascal declaration

type link = ↑cell;

cell = record

info: integer;

next: link;

end;

The declaration of cell contains itself (via the next pointer).

The graph for this type therefore contains a cycle.

30

Cyclic types

The situation in C is slightly different, since it is impossible to
refer to an undeclared name.

typedef struct _cell {

int info;

struct _cell *next;

} cell;

typedef *cell link;

But the name link is just shorthand for

(struct _cell *).

C uses name equivalence for structs to avoid recursion
(after expanding typedef’s).

But it uses structural equivalence elsewhere.

31

Type conversion

Suppose we encounter an expression x+i where x has type float and i has

type int.

CPU instructions for addition could take EITHER float OR int as operands,

but not a mix.

This means the compiler must sometimes convert the

operands of arithmetic expressions to ensure that

operands are consistent with operators.

With postfix as an intermediate language for expressions,

we could express the conversion as follows:

x i inttoreal float+

where real+ is the floating point addition operation.

32

Type coercion

If type conversion is done by the compiler without the
programmer requesting it, it is called IMPLICIT conversion
or type COERCION.

EXPLICIT conversions are those that the programmer

specifices, e.g.

x = (int)y * 2;

Implicit conversion of CONSTANT expressions should be done
at compile time.

33

Type checking example with coercion

Production Semantic Rule

E -> num E.type := integer

E -> num . num E.type := real

E -> id E.type := lookup(id.entry)

E -> E1 op E2 E.type := if E1.type == integer and E2.type == integer

then integer

else if E1.type == integer and E2.type == real

then real

else if E1.type == real and E2.type == integer

then real

else if E1.type == real and E2.type == real

then real

else type_error

