BESSEL FUNCTIONS

Bessel's equation of order n is

$$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}} + x \frac{\mathrm{d}y}{\mathrm{d}x} + (x^{2} - n^{2})y = 0 \tag{4.1}$$

(where, since it is only n^2 that enters the equation, we may always take n to be non-negative).

we obtain the solution which we shall denote by $J_n(x)$ and shall call the

Bessel function of the first kind of order n:

$$J_n(x) = \sum_{r=0}^{\infty} (-1)^r \frac{1}{r!\Gamma(n+r+1)} \left(\frac{x}{2}\right)^{2r+n}.$$

So far we have dealt with the root of the indicial equation s = n. The other root s = -n will also give a solution of Bessel's equation, and the form of this solution is obtained just by replacing n in all the equations above by -n, so that we obtain the solution to Bessel's equation

$$J_{-n}(x) = \sum_{r=0}^{\infty} (-1)^r \frac{1}{r!\Gamma(-n+r+1)} \left(\frac{x}{2}\right)^{2r-n}.$$
 (4.7)

Theorem 4.1

When n is an integer (positive or negative),

$$J_{-n}(x) = (-1)^n J_n(x).$$

PROOF

First consider n > 0.

Then

$$J_{-n}(x) = \sum_{r=0}^{\infty} (-1)^r \frac{1}{r!\Gamma(-n+r+1)} \left(\frac{x}{2}\right)^{2r-n}$$

from equation (4.7).

But $\Gamma(-n+r+1)$ is infinite (and hence $1/\{\Gamma(-n+r+1)\}$ is zero) for those values of r which make the argument a negative integer or zero, i.e., for $r=0,1,2,\ldots(n-1)$ (remembering that this is possible because n is integral).

Hence the sum over r in the above expression for $J_{-n}(x)$ can equally well be taken from n to infinity, and then

$$J_{-n}(x) = \sum_{r=n}^{\infty} (-1)^r \frac{1}{r!\Gamma(-n+r+1)} \left(\frac{x}{2}\right)^{2r-n}$$
$$= \sum_{m=0}^{\infty} (-1)^{m+n} \frac{1}{(m+n)!\Gamma(m+1)} \left(\frac{x}{2}\right)^{2(m+n)-n}$$

(where we have changed the variable of summation to m = r - n)

$$= (-1)^n \sum_{m=0}^{\infty} (-1)^m \frac{1}{(m+n)!\Gamma(m+1)} \left(\frac{x}{2}\right)^{2m+n}.$$

But

$$J_n(x) = \sum_{m=0}^{\infty} (-1)^m \frac{1}{m!\Gamma(n+m+1)} \left(\frac{x}{2}\right)^{2m+n}$$
(by equation (4.6))

so all that remains in order to complete the proof is to show that

$$(m+n)!\Gamma(m+1)=m!\Gamma(n+m+1)$$

for n and m integral.

But

$$(m+n)!\Gamma(m+1) = (m+n)(m+n-1)...(m+1)m!\Gamma(m+1)$$

= $m!\Gamma(m+n+1)$

(on using repeatedly the result that $\Gamma(x+1) = x\Gamma(x)$), and thus the result is proved.

Now consider n < 0; in this case we may write n = -p with p > 0. Then what we require to prove is that

or
$$J_{p}(x) = (-1)^{-p} J_{-p}(x)$$
$$(-1)^{p} J_{p}(x) = J_{-p}(x)$$

which, of course, since p is positive, is just the result we have proved above.

Let us summarise what we have proved so far: we have shown that if n is not an integer then $J_n(x)$ and $J_{-n}(x)$ (defined by equations (4.6) and (4.7), respectively) are independent solutions of Bessel's equation (so that the general solution is given by $AJ_n(x) + BJ_{-n}(x)$) while if n is an integer they are still solutions of Bessel's equation but are related by

$$J_{-n}(x) = (-1)^n J_n(x).$$

GENERATING FUNCTION FOR THE BESSEL FUNCTIONS

Theorem 4.5

$$\exp\left\{\frac{1}{2}x\left(t-\frac{1}{t}\right)\right\} = \sum_{n=-\infty}^{\infty} t^n J_n(x).$$

Proof

We expand $\exp\left\{\frac{1}{2}x\left(t-\frac{1}{t}\right)\right\}$ in powers of t and show that the coefficient of t^n is $J_n(x)$:

$$\exp\left\{\frac{1}{2}x\left(t-\frac{1}{t}\right)\right\} = \exp\left(\frac{1}{2}xt\right). \exp\left(-\frac{1}{2}\frac{x}{t}\right)$$
$$= \sum_{r=0}^{\infty} \frac{\left(\frac{1}{2}xt\right)^r}{r!} \sum_{s=0}^{\infty} \frac{\left(-\frac{1}{2}x/t\right)^s}{s!}$$

5 1 10

$$= \sum_{r, s=0}^{\infty} \frac{\left(\frac{1}{2}\right)^{r} x^{r} t^{r} (-1)^{s} \left(\frac{1}{2}\right)^{s} x^{s} t^{-s}}{r! \ s!}$$

$$= \sum_{r, s=0}^{\infty} (-1)^{s} \left(\frac{1}{2}\right)^{r+s} \frac{x^{r+s} t^{r-s}}{r! \ s!}. \tag{4.12}$$

We now pick out the coefficient of t^n , where first we consider $n \ge 0$. For a fixed value of r, to obtain the power of t as t^n we must have s = r - n. Thus for this particular value of r the coefficient of t^n is

$$(-1)^{r-n}\left(\frac{1}{2}\right)^{2r-n}\frac{x^{2r-n}}{r!(r-n)!}$$

We get the total coefficient of t^n by summing over all allowed values of r. Since s = r - n and we require $s \ge 0$, we must have $r \ge n$. Hence the total coefficient of t^n is

$$\sum_{r=n}^{\infty} (-1)^{r-n} \left(\frac{1}{2}\right)^{2r-n} \frac{x^{2r-n}}{r!(r-n)!} = \sum_{p=0}^{\infty} (-1)^p \frac{(x/2)^{2p+n}}{(p+n)! \, p!}$$
(where we have set $p = r - n$)
$$= \sum_{p=0}^{\infty} (-1)^p \frac{(x/2)^{2p+n}}{\Gamma(p+n+1)p!}$$
(remembering that both p and n are integral, so that we may use the result of theorem 2.3 that $\Gamma(p+n+1) = (p+n)!$)
$$= J_n(x)$$
(by equation (4.6)).

If now n < 0, we still have the coefficient of t^n for a fixed value of r given by

$$(-1)^{r-n} \left(\frac{1}{2}\right)^{2r-n} \frac{x^{2r-n}}{r!(r-n)!}$$

but now the requirement that $s \ge 0$ with s = r - n is satisfied for all values of r. Thus the coefficient of t^n is just

$$\sum_{r=0}^{\infty} (-1)^{r-n} \left(\frac{1}{2}\right)^{2r-n} \frac{x^{2r-n}}{r!(r-n)!} = (-1)^{-n} \sum_{r=0}^{\infty} (-1)^r \frac{(x/2)^{2r-n}}{r!\Gamma(r-n+1)}$$

$$= (-1)^n J_{-n}(x)$$
(by equation (4.7))
$$= J_n(x)$$
(by theorem 4.1).

INTEGRAL REPRESENTATIONS FOR BESSEL FUNCTIONS

Theorem 4.6

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\phi - x \sin \phi) d\phi$$
(n integral).

Proof

Since $J_{-n}(x) = (-1)^n J_n(x)$ for *n* integral, the result of theorem 4.5 may be written in the form

$$\exp\left\{\frac{1}{2}x\left(t-\frac{1}{t}\right)\right\} = J_0(x) + \sum_{n=1}^{\infty} \{t^n + (-1)^n t^{-n}\} J_n(x).$$

If we now write $t = e^{i\phi}$ so that

$$t - \frac{1}{t} = e^{i\phi} - e^{-i\phi} = 2i \sin \phi$$

this equation becomes

$$e^{ix\sin\phi} = J_0(x) + \sum_{n=1}^{\infty} \{e^{in\phi} + (-1)^n e^{-in\phi}\} J_n(x).$$

But when n is even

$$e^{in\phi} + (-1)^n e^{-in\phi} = e^{in\phi} + e^{-in\phi} = 2 \cos n\phi$$

while when n is odd we have

$$e^{in\phi} + (-1)^n e^{-in\phi} = e^{in\phi} - e^{-in\phi} = 2i \sin n\phi.$$

Thus we have

$$\mathrm{e}^{\mathrm{i}x\sin\phi} = J_0(x) + \sum_{n \text{ even}} 2\cos n\phi J_n(x) + \sum_{n \text{ odd}} 2\mathrm{i}\sin n\phi J_n(x)$$

$$= J_0(x) + \sum_{k=1}^{\infty} 2\cos 2k\phi J_{2k}(x) + \mathrm{i}\sum_{k=1}^{\infty} 2\sin (2k-1)\phi J_{2k-1}(x).$$

Equating real and imaginary parts of this equation gives

$$\cos(x \sin \phi) = J_0(x) + \sum_{k=1}^{\infty} 2 \cos 2k\phi J_{2k}(x)$$
 (4.13)

$$\sin(x\sin\phi) = \sum_{k=1}^{\infty} 2\sin(2k-1)\phi J_{2k-1}(x). \tag{4.14}$$

If we multiply both sides of equation (4.13) by $\cos n\phi$ (n > 0), both sides

of equation (4.14) by $\sin n\phi$ ($n \ge 1$), integrate from 0 to π and use the identities

$$\int_0^{\pi} \cos m\phi \cos n\phi \, d\phi = \begin{cases} 0 & (m \neq n) \\ \pi/2 & (m = n \neq 0) \\ \pi & (m = n = 0) \end{cases}$$

$$\int_0^{\pi} \sin m\phi \sin n\phi \, d\phi = \begin{cases} 0 & (m \neq n) \\ \pi/2 & (m = n \neq 0), \end{cases}$$

and

we obtain the results

$$\int_0^{\pi} \cos n\phi \cos (x \sin \phi) d\phi = \begin{cases} \pi J_n(x) & (n \text{ even}) \\ 0 & (n \text{ odd}) \end{cases}$$
$$\int_0^{\pi} \sin n\phi \sin (x \sin \phi) d\phi = \begin{cases} 0 & (n \text{ even}) \\ \pi J_n(x) & (n \text{ odd}). \end{cases}$$

and

Adding these last two equations gives

$$\int_0^{\pi} \left\{ \cos n\phi \cos (x \sin \phi) + \sin n\phi \sin (x \sin \phi) \right\} d\phi = \pi J_n(x)$$

for all positive integral n.

$$\int_0^{\pi} \cos (n\phi - x \sin \phi) d\phi = \pi J_n(x)$$

which is the required result for positive n.

If n is negative, we may set n = -m where m is positive, so that the required result is

$$\int_0^{\pi} \cos(-m\phi - x \sin \phi) d\phi = \pi J_{-m}(x)$$
(where *m* is positive).

But
$$\int_0^{\pi} \cos(-m\phi - x\sin\phi) d\phi$$

$$= \int_{\pi}^{0} \cos \{-m(\pi - \theta) - x \sin (\pi - \theta)\}. -d\theta$$

(where we have changed the variable by setting $\theta = \pi - \phi$)

$$= \int_0^{\pi} \cos \{-m\pi + m\theta - x \sin \theta\} d\theta$$
$$= \int_0^{\pi} \{\cos (m\theta - x \sin \theta) \cos m\pi$$

 $+\sin(m\theta - x\sin\theta)\sin m\pi\}d\theta$

$$= (-1)^m \int_0^\pi \cos(m\theta - x \sin \theta) d\theta$$
$$= (-1)^m \pi J_m(x)$$

(since we know the result to be true for positive m)

$$=\pi J_{-m}(x)$$

$$=\pi J_n(x).$$

Theorem 4.27

$$\int_0^\infty e^{-ax} J_0(bx) dx = \frac{1}{\sqrt{(a^2 + b^2)}} \quad (a > 0).$$

PROOF

From theorem 4.6 we have

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \phi) d\phi.$$

Hence

$$\int_{0}^{\infty} e^{-ax} J_{0}(bx) dx = \int_{0}^{\infty} e^{-ax} \frac{1}{\pi} \int_{0}^{\pi} \cos(bx \sin \phi) d\phi dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \left[\int_{0}^{\infty} e^{-ax} \frac{1}{2} \{ \exp(ibx \sin \phi) + \exp(-ibx \sin \phi) \} dx \right] d\phi$$
(interchanging the order of integration)
$$= \frac{1}{2\pi} \int_{0}^{\pi} \left[\frac{\exp\{-(a - ib \sin \phi)x\}}{-a + ib \sin \phi} + \frac{\exp\{-(a + ib \sin \phi)x\}\}}{-a - ib \sin \phi} \right]_{0}^{\infty} d\phi$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} \left\{ \frac{1}{a - ib \sin \phi} + \frac{1}{a + ib \sin \phi} \right\} d\phi$$

$$= \frac{a}{\pi} \int_{0}^{\pi} \frac{1}{a^{2} + b^{2} \sin^{2} \phi} d\phi.$$

But this last integral may be evaluated by elementary means (e.g., by the substitution $u = \cot \phi$) to give

$$\int_0^\infty e^{-ax} J_0(bx) dx = \frac{a}{\pi} \frac{\pi}{a\sqrt{(a^2+b^2)}}$$

$$= \frac{1}{\sqrt{(a^2+b^2)}}.$$

Theorem 4.28

$$\int_{0}^{\infty} J_{n}(bx) dx = \frac{1}{h} \text{ (if n is a non-negative integer).}$$

PROOF

We first prove the result for n = 0 and n = 1, and then show that if the result is true for n = N, it is also true for n = N + 2, thus proving the result for all non-negative integral n.

For n = 0 we take the limit as $a \rightarrow 0$ of the result of theorem 4.27, obtaining

$$\int_0^\infty J_0(bx) \, \mathrm{d}x = \frac{1}{b}.$$

For n = 1 we make use of theorem 4.8(ii), which says 1

$$\frac{\mathrm{d}}{\mathrm{d}x}\{x^{-n}J_n(x)\} = -x^{-n}J_{n+1}(x)$$

so that, by taking n = 0, we have

$$\frac{\mathrm{d}}{\mathrm{d}x}J_0(x)=-J_1(x),$$

and replacing x by bx gives

$$\frac{\mathrm{d}}{\mathrm{d}(bx)}J_0(bx) = -J_1(bx)$$

which is equivalent to

$$\frac{1}{b} \frac{\mathrm{d}}{\mathrm{d}x} J_0(bx) = -J_1(bx).$$

$$\int_0^\infty J_1(bx) \, \mathrm{d}x = -\frac{1}{b} \left[J_0(bx) \right]_0^\infty$$

$$= \frac{1}{b},$$

Hence

ا.د/ زينهم جمعة