BESSEL FUNCTIONS

Bessel’s equation of order # is
d2y dy |
2 _~ A 2 __ p¥ —
e + x = n*)y =0 (4.1)

(where, since it is only n? that enters the equation, we may always take n
to be non-negative).

we obtain the solution which we shall denote by [,,(x) and shall call the

Bessel function of the first kind of order n:
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So far we have dealt with the root of the indicial equation s = n. The
other root s = ——n will also give asolution of Bessel’s equation, and the form
of this solution is obtained just by replacing n in all the equations above by
—mn, so that we obtain the solution to Bessel’s equation

r—n

Ty = 2, (=1 k) - *+7)

Theorem 4.1

When n is an integer (positive or negative),

S —nlx) = (—1)Ja(x).

Proor
First consider n > 0.
Then
Joale) = > 1y e ()
ril(—n +r + 1\2

r=0
from equation (4.7).

But I'(--n + r + 1) is infinite (and hence 1 /{I'(—n + r -+ 1)} is zero)
for those values of r which make the argument a negative integer or zero,
ie,forr =0,1,2,...(n — 1) (remembering that this is possible because
n is integral).



Hence the sum over 7 in the above expression for [ _,(x) can equally well
be taken from 7 to infinity, and then

r=

o0 1 x 2lm+n)—mn
= > e (3)
“ - n)Il(m + 1)

(where we have changed the variable of summation to m = r — n)
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But

- 1 2m4n
Ju@) = > (1) m!D(n + m + I)G)

=0

(by cquation (4.6))

so all that remains in order to complete the proof is to show that
(m +n)!l'(m + 1) =m!I(n 4+ m + 1)

for n and m integral.
But

(m +n)!lm 4+ 1) =m +n)(m +n —1)...(m 4+ )m!I(m 1)
= m!l'(m - n + 1)

(on using repeatedly the result that I'(x 4 1) = xI'(x)), and thus the
result is proved.

Now consider # < 0; in this case we may write # = —p with p > 0.
'I'hen what we require to prove is that

Jp(¥) = (—1)77] ()
or (=1)"Jp(x) = J ()

which, of course, since p is positive, is just the result we have proved
above.

Let us summarise what we have proved so far: we have shown that if n
is not an integer then J,(x) and J _,(x) (defined by equations (4.6) and
(4.7), respectively) are independent solutions of Bessel's equation (so that
the general solution is given by 4/,(x) -+ BJ _,(x)) while if n is an integer
they are still solutions of Bessel’s equation but are related by

J—u(®) = (—1)"Tu(x).



GENERATING FUNCTION FOR THE BESSEL FUNCTIONS

exp {; (t = -)} Z 1] o).

n=—co

Theorem 4.5

Proor

1 1
We expand exp {—x(t — _f)} in powers of ¢ and show that the coefh-
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cient of 2* is_J,(x):
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We now pick out the coefficient of ¢*, where first we consider n = 0.
For a fixed value of r, to obtain the power of £ as " we must haves — v — n.
Thus for this particular value of r the coefficient of " is

1 2r —n xer—m
(=1 (2) ri(r — m)!

We get the total coefficient of #* by summing over all allowed values of
r. Since s = r — n and we require s = 0, we must have » = n. Hence the
total coefficient of #* is

o 2r—n ylr—n = ;, (xf2)2p+n
> () o=l 2 Y Grnyip

r=1 =}

(where we have set p — r — n)
=3 2
— I'(p + n -+ 1)p!

(remembering that both p and n
are integral, so that we may use
the result of theorem 2.3 that

TP +n+1) =(p +n))
= Julx)
(by equation (4.6)).
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If nown < 0, westill have the cocflicient of 1 for a fixed Valuc of r given by

= (3)" ﬁ,

but now the requirement that s = 0 with s =7 — n is satisfied for all
values of r. Thus the coefficient of 1" is just

0 . 1\ 2r—-n x2r-n B - r (JCXZ}Q"_“
; (__1) (E) l“l(?’ _1} Z ( ?’!P(?’ —n 1}
= (= I)"]_n(x)
(by equation (4.7))
= Jn(¥)

(by theorem 4.1).

INTEGRAL REPRESENTATIONS FOR BESSEL FUNCTIONS

Theorem 4.6

Proor

Ta(x) = 311: J-:cos (nd - x sin ¢) dé

(n integral).

Since [ _,(x) = (—1)*] () for = integral, the result of theorem 4.5 may
be written in the form

ep {5t )} =) + 2&" A

n

1f we now write ¢ = ¢'¢ so that

1 . . .
t-n—t:c"*—c*'*:hsmq&

this equation becomes

1rlinq5 _J (x _+_ z {ewqﬂv l)ﬂe—liilﬁ}]ﬂ_(x)-

n=1

But when n 1s even

e + (—1)re ™ = "t L e” " = 2 cos ng,



while when # is odd we have
™ (—1)r eI = ™ — e~ = 2j 5in nd,
Thus we have

= Jx) + Y 2cosnp]x) + D Zsinng](x)

= Jo(®) + i 2 cos 2k Ju(x) + 1 i 2sin (2k — 1) [y _4(%).
k=1 =1

Equating real and imaginary parts of this equation gives

cos (xsin §) = Jo(¥) + ) 2 cos 2k Ju) (4.13)

sin (v sin ¢) = > 2sin (2% ~ 1) Jus_,(2) (4.14)

If we multiply both sides of equation (4.13) by cos ng (n = 0), both sides

of equation (4.14) by sinng (n > 1), integrate from 0 to z and use the
identities
0 (m=n)
j cos m¢ cos np dp = <m/2 (m = n ++~0)
0
m  (m=mn=20)
0 (m == n)

and j: sin m¢ sin np dé = {ﬂ/z (m = n =0)

we obtain the results
] (x) (n even)

J:cos n¢ cos (x sin ¢) d¢ = {0 (7 0dd)
0 (n even)

and jo sin n¢ sin (x sin ¢) dp — ] (x) (n odd).

Adding thesc last two equations gives

r {cos n cos (x sin ¢) + sin ng sin (x sin ¢)} db — 7 J(%)



for all positive integral #.

7T
Hence j cos (nd — x sin ¢) dd = =], (x)
0
which is the required result for positive 7.
If n is negative, we may set n = —m where m is positive, so that the

required result is
'r cos (—m¢ — xsin ¢) dp = nJ_,.(x)
0
(where m is positive).

But rcos (—mp — xsin ¢) do

_ Jocos (—m(z — 0) — xsin (z — 6)}. —do

(where we have changed the variable by setting

0 = —d¢)
= Jncos {—mn + mO — xsin 0} df
0

= I {cos (m0 — x sin 0) cos mn
0

+- sin (m — x sin 0) sin ma} dO

=(—1)m™ Jn cos (mf — x sin 0) d0
= (—1)"nfn(x)

(since we know the result to be true for positive m)
= 75 ] _u(x)
= 7 [ ,(%).

Theorem 4.27

1
V(a* + b?)

j: e “Jo(bx) dx = (a > 0).



Proor
From theorem 4.6 we have

Jo(x) = i J: cos (x sin ¢) dé.

Hence
o0

'[: e ] (bx) dx = -[0
—~ }z 'f D [ J : e~ }{exp (ibx sin &) + exp (—ibax sin $)} dx} dg

(interchanging the order of integration)

exp {—(a — ibsin d)x}  exp {—(a - ib sin ¢)x}
~z )l + Joo

—a—l—lbsm¢ —a — ibsin ¢

e_“i J cos (bx sin ¢) dé dx
0

- 1
=E.[o{a " bsin +a+ibsinqs}d¢’

a[” 1
e .[oaﬂ + 623in2¢>d¢'
But this last integral may be evaluated by elementary means (e.g., by
the substitution u# = cot ¢) to give
“ a
Jo e =2
1
BRGET)

Theorem 4.28

j‘ Ja(bx) dx = -; (#f n is a nom-negative integer).
0

Proor
We first prove the result for n = 0 and » = 1, and then show that if the
result 1s true for n = N, it is also true for n = N + 2, thus proving the

result for all non-negative integral z.
For n == 0 we take the limit as @ — 0 of the result of theorem 4.27,

obtaining

j:}]u(bx) dx -



I'or n = 1 we make use of theorem 4.8(ii), which says f

d
E_x{x“”]ﬂ(x)} == =& ")
50 that, by taking n = 0, we have

d
= Jo®) = —Jx(),

and replacing x by bx gives

d
a0 =
which is equivalent to
1d
2 = Jobw) = —J:(bx).

[ a)

Hence j: J(bx) dx — — }—, [ ]O(bx)]
B 1
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